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Final Project Prompt

* You will analyze an NGS dataset of your choosing from “start”
to “finish”.

* You will begin by identifying your dataset. Pu blmed
 You will then download the data. (€D
* You will then process it.

* You will then visualize it. Studio

+ You will then interpret and deliver your findings.| .~ == —

T ORIt T

« Along the way you will perform QUALITY CONTROL

Multi®@C




Final Project Delivery

* All students will deliver an oral presentation to
communicate their results and interpretations.

* Everyone will submit a folder with their compiled analysis...
more details to come!

* Everyone must be present for the final weeks’ presentations.



Ski Trails
Y

K Easiest / \More Difficult / \Most Difficult / \Experts Only /

You will be asked to select a trail and a corresponding
challenge.

All challenge prompts below are *specific* to RNA-Seq. If you select a different kind
of NGS dataset to analyze, I will generate a challenge prompt specific for your data
type and trail.
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Green
Mountain

Trail

Challenge 1:
Adjusting the
Threshold for

Differential Gene
Expression (DEG)

Igh"*5* plasma cells
Expression (normalized riog)
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Green
Mountain
Trail

How would you label
this MA plot?

Challenge 3: Changing
Color Schemes/Labeling for
Data Interpretation

Adjust the color scale of a
heatmap (e.g., changing from
a red-green to a blue-yellow
color scheme) and evaluate
how the choice of
visualization colors
influences the clarity of
expression trends and ease of
data interpretation.
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Blue Sky Trail

Compare and Contrast bwmformattc todls during
the preprocessing stage and descri ]
the data interpretation




The bioinformatic pipeline we will learn in class is:

 MMG3320 | Whatitdoes..
FASTQC Quality control FASTQC files

Trimmomatic Trim adaptors and low quality
reads
HISAT2 Alignment to Genome
STAR

HTSeqg-count Create counts files



RNA-Seq and bioinformatics analysis
Total RNA prepared was extracted using TRIzol Rea- FASTQC
gent (Invitrogen, Carlsbad, CA, USA) and submitted to
Shanghai Personal Biotechnology, where RNA intergrity
was confirmed using the Illumina HiSeq X ten system at
150 bp pair-ended. Double-strand ¢cDNA libraries were
prepared and constructed using the TruSeq RNA Sam-
le Prep Kit (Illumina, San Diego, CA). Two replicates
Ef the IENA-Seq experiments wegre performed. RIETA-Seq SAMtools
reads were q.uality‘controlled e‘md trimmed for ad.apter HTSeq-count
sequences using Trim Galore. Filtered reads were aligned
to hg38 using[HISAT2. Tkead counts for each gene were DeSeq2
carried out using HT-Seq using the hg38 refSeq refFlat
GTF file accessed on July 2015. Difterentially expressed
genes (DEGs) were analysed using the DESeq2 package
(|fold change| > 1.5, P <0.05).

Trimmomatic

# of DEGs
VERSUS

Information on the data Challenge 1: Testing Different Alignment Tools
processing can be found ...? Align the RNA-Seq reads to the reference
® genome using two different aligners (e.g.,
(,@b Pu bmed HISAT2 vs. STAR). Compare metrics such as
alignment rate, number of uniquely mapped
reads, and runtime, and discuss how the choice of
aligner might affect downstream analysis.



RNA-Seq and bioinformatics analysis

Total RNA prepared was extracted using TRIzol Rea-
gent (Invitrogen, Carlsbad, CA, USA) and submitted to
Shanghai Personal Biotechnology, where RNA intergrity
was confirmed using the Illumina HiSeq X ten system at
150 bp pair-ended. Double-strand ¢cDNA libraries were
prepared and constructed using the TruSeq RNA Sam-
ple Prep Kit (Illumina, San Diego, CA). Two replicates
of the RNA-Seq experiments were performed. RNA-Seq
reads were quality controlled and trimmed for adapter
sequences using Trim Galore. Filtered reads were aligned
[to hg38 uding HISAT2. Read counts for each gene were
carried out using HT-Seq using the hg38 refSeq refFlat
GTF file accessed on July 2015. Difterentially expressed
genes (DEGs) were analysed using the DESeq2 package
(|fold change| > 1.5, P <0.05).

FASTQC

Trimmomatic
HISAT?2

SAMtools

HTSeq-count
DeSeq2

Challenge 2: Evaluating Reference
Genome Versions

Map the RNA-Seq reads to two different
versions of the reference genome (e.g.,
GRCh37 vs. GRCh38). Compare the
alignment statistics and any differences in
gene annotations. Discuss how the choice
of reference genome might influence
downstream results and biological
interpretations.



RNA-Seq and bioinformatics analysis

Total RNA prepared was extracted using TRIzol Rea- FASTQC

gent (Invitrogen, Carlsbad, CA, USA) and submitted to . .

Shanghai Personal Biotechnology, where RNA intergrity
was confirmed using the Illumina HiSeq X ten system at HISAT2

150 bp pair-ended. Double-strand ¢cDNA libraries were

prepared and constructed using the TruSeq RNA Sam- SAMtools

ple Prep Kit (Illumina, San Diego, CA). Two replicates

of the RNA-Seq experiments were performed. RNA-Seq
reads were quality controlled and trimmed for adapter
sequences using Trim Galore. Filtered reads were aligned DeSeq2

to hg38 using HISAT2. Read counts for each gene were
carried out usirfg H1-Seq hsing the hg38 refSeq refFlat
GTF file accessed on July 2015. Difterentially expressed
genes (DEGs) were analysed using the DESeq2 package
(|fold change| > 1.5, P <0.05).

Challenge 3: Comparing Count Generation Tools

Generate counts files using two different tools (e.g., HTSeq-count vs.
featureCounts). Compare the total number of assigned reads, unassigned
reads, and computational efficiency. Discuss how differences in counting
strategies might influence downstream analyses such as differential
expression.

The blue trail highlights the importance of tool selection during the preprocessing
stage and its impact on the interpretation of RNA-Seq data.



N o

“Process and Download an NGS data\s:et“ ‘

‘ \'t_est an origilial hypothesis”



Your overall approach will be
different

You are going in with a hypothesis and using the
dataset to test this hypothesis.

“Compared to macrophages, | hypothesize that
Dendritic cells activated with LPS will express an
upregulation of glycolytic genes as opposed to
genes required for oxidative phosphorylation.”



“Compared to macrophages, | hypothesize that Dendritic cells activated
with LPS will express an upregulation of glycolytic genes as opposed to
genes required for oxidative phosphorylation.”

—>  Macrophages (control) 3
—> Dendritic cells (control)

3

— Macrophages + LPS 3
— Dendritic cells + LPS 3

=—Mosrgnhococt Zob KO 2
Dendritiecelv—Zehilca ,

—Sacronhages £ Zebl KO
+ LPS

Dendriti lls &+ Zebl KO 3
+ LLPS



Challenge 1: Creating Time-Series or Condition-Specific Plots

If your data includes multiple time points or conditions, create a figure (e.g., line plots or
heatmaps) to visualize expression changes for key genes across these conditions. Highlight
patterns or trends and discuss how they support or refute your biological hypothesis.

Challenge 2: Comparing Pathway Expression Across Groups

Use pathway analysis to identify key pathways enriched in a subset of your data. Create a
customized plots (e.g. bar plots, dot plots, network graphs) to compare pathway activity between
experimental groups not compared in the published work. Discuss how the visualization
highlights the differences in pathway regulation.

Challenge 3: Annotating Single-Gene Expression Differences

Select a gene of interest from your dataset and create a violin plot or boxplot comparing its
expression across conditions or groups. Customize the figure to include statistical annotations
(e.g., p-values or fold changes) and explain why this gene is biologically significant.

For all black trail challenges you will be required to design a multi-panel figure that
integrates multiple layers of analysis (e.g., a heatmap for expression patterns, a volcano plot for
DEQG results, and a GO enrichment bar chart). Explain how the combination of figures tells a
cohesive story and enhances the overall interpretation of the data.

The black trail encourages students to think critically about data visualization

while developing skills to create professional, publication-quality figures that
clearly convey their original findings.



How do | select a trail?

What personal goal do you have?

v| "l want to be confident downloading a dataset from GEO &
replicating results” - Green Trail
AND
v] "l want to added challenge”
"| want to be able to understand the difference in using varying
computational tools and when | would implement them"
"l am thinking of bioinformatics as a future profession” - Blue Trail

] "'l wantto go to graduate school"
"I'm in graduate school and | want to advance my research
project” - Black DiamondTrail




General

a. This 1s an individual assignment unless granted
permission.

b. Each student will be allocated 15 minutes to present
their findings and answer questions from the audience
during the last week of class. All students are required to
attend these sessions. The audience will be able to ask you
questions during the presentation.



Selecting an NGS dataset

Acceptable Unacceptable
RNA-Seq Single-cell RNA-Seq
ChlIP-Seq Microarray
ATAC-Seq Spatial Transcriptomics

Permission required:
*Research-specific
dataset
Metagenomics
WGS/WES

*Beware*




Selecting a

Download dataset

Index Genome

Alignment

dataset
Estimated
timeto
! 1-2 weeks 24 hours Thr-3 days 3-7days +
complete
Per5GB =1.5hrs= Depends on how Dependent onthe
one sample large the genome is number of samples
Comment Dependent on
alignment strategy
~100 points ~100 points ~150 points
Select dataset, Alignment stats
and justify why FASTQC + + interpretation
Homework dataset and interpretation
Assignment trailwere Decision to be
selected made on how to
proceed based on
interpretation
Due dates Mid Feb Late Feb/ Early to Mid March
(tentative) Early March




Important Disclosures

e While in-class, we will be going through the basic steps of data processing using a
dataset that is publicly available.

e This project requires that you use what you learned in-class and apply it to a
different NGS dataset.

o  We both will not know the quality of the published dataset you selected until about
March. Therefore, depending on what we find we may need to pivot and change the
intention of the final project goals.

e | am most familiar with advising on a human or mouse system. However, other
organisms are completely fine to select. You will be in charge of understanding if for

example “...there are pathway analysis tools available for Drosophila...” or where
to find the GTF file for bacteria.

o  We will hit many unforeseen hiccups. This is completely normal in the realm of
bioinformatics! Be prepared to troubleshoot.

e [ donothave control over how fast or slow your data will process on the VACC. The
alignment step is the most COMPUTATIONAL HEAVY STEP of the ENTIRE
pipeline. Please do not leave this for the last minute as the VACC does have multiple
users!



Lessons from Last Year

e If you select black trail but then see around April that your analysis 1s more
aligned with green trail, this is 100% okay. But you must consult with me and
tell me at least a week prior to your presentation that you will be changing
trails. There will be a major point deduction if your presentation and trail
selected do not match!

e [f you select the black trail, I expect an original hypothesis to be tested. Points
will be deducted if this original hypothesis is not present or tested.

e | had multiple students throughout the years who opted to analyze a dataset
“sitting in their lab.” Some of these students were wildly successful, others were
not.



Common
experimental

designs for NGS

Technologies

GENOMICS
WGS, WES

Human

TRANSCRIPTOMICS
RNA-seq

EPIGENOMICS
Methyl-seq
ChIP-Seq
ATAC-seq

>

Microbiome

S

o\ —

Sor
S

METAGENOMICS
16S rRNA
ITS
Shotgun
Targeted panels

Data analysis

Point mutations

Small Indels

Copy number variation
Structural variation
Lineage identification

Differential expression
Gene fusion
Alternative splicing
RNA editing

Methylation
Histone modifications

e Transcription factor

binding

Bacterial profiling
Fungal profiling
Microbiome profiling
AMR gene profiling
Targeted gene analysis

Applications

Functional
effects
of mutations

Network &
pathway
analysis

Integrative
analysis

[a.leoqueau 3 sonsoubeiq ‘yoseasay ]



Bulk RNA-Seq: When to Use it?

Measures average gene expression across a tissue or cell population

Best for:
s Comparing disease vs control
+* Treatment response studies

* Pros: cost effective & robust
* Limitations: obscures cell-type composition

CeneRaln

Useful when the research question is about global expression changes or
pathways, but not cell-type resolution.



Basic types of questions

answered:

What genes are differentially expressed
between conditions?

Expression value

>

Significant
difference

Group A sample

No significant
difference

I Group A mean

O Group B sample

. Group B mean
D Global mean



A CD27 vs CD38 CD20 vs CD10 CD34 vs CD20

Other questions -

Cell type
answered:
Are there any trends in N

. 103_?_ //K-/"m 10 Naive
gene expression across 1S |+ oo
development? "3 "
Which groups of genes L e e 4
change similarly over il
time Or acrOSS .§. " Affinity maturation Terminal differentiation
conditions? 1 oo R\ TR R

w@m — mw‘mw«w


https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138236
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138236
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138236
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138236
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138236
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138236
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138236

Basic types of questions answered:

What processes or pathways are enriched
iIn condition of interest?

Single cell

Day10, —>» scRNA-seq
Normoxia for 9 days T3 Whobe lumig Hrom dissociation
Entrika mice t — the Control group
ntrain mice to
Bulk RNA-s:
12/12h light/dark |  2™° zm2 u eq
cycle for 14 days
28/ 55
IH for 9 days Day10,
WWWWWWAWWA zm3 Single cell —» scRNA-seq
———> Whole lung from BRI
ZT10 Zm2 the IH group
Bulk RNA-seq
B C
BRGIegaREsis related s
[GIGSRANIS) < opment o v 3
[ESHOREE to hypoxia Bl Oown £
[BBSHliVe regulation of cell division / proliferation
[EGM organization " logZ(E:x:lMed)
Bifgadian rhythm § .
188l migration s ' 05
fififbune response related 0
[mierdtubule-based movement -
‘spindle organization :
chromosome segregation g sy
35
collcycle Ea
cell division =g
0 2

a4 6 8 >=10
-log10(BHQ)



https://elifesciences.org/articles/63003

Basic Principals

« Study Design

* Quality Assessment (UNIX)

« Trimming & Preprocessing (UNIX)
« Alignment (UNIX)

 Visualization of BAMs/counts (R)

P e
P T =
Not so simple any more ... ,,/0 '70503%[@9/ ™
Planning ( Pliong for g ®and q A
Experiment design 00Is ang 2 ads m( oy,
RNA extraction & Library prep _Teade ar; "Jctices for /:'”l ey
! ‘\_\\ yet eme nl} /
Alignment to genome FASTQ E: rg,,zl, 2
Spllce-awarg (.gapped) aligners FastQC & MultiQC, Trimming adaptors,
(STAR, minimap2, GMAP, 5 Removing poor bases and reads De-novo
Rsubread-align) (Cutadapt, Trimmomatic) transcriptome assembly
7 (becoming possible with
Alignment to transcriptome long reads ...)

Transcripts assembly un-gapped aligners
from genome-alignment (Bowtie)
(StringTie, Cufflinks)

“Alignment-free” quantification
quasi-mapping to transcriptome
. : (Salmon , Kallisto, Sailfish)
Count from BAM
(HTSeq-count, RSEM, eXpress,
Rsubread-featureCounts )

Counts

Differential expression
(DESeq2, edgeR, voom-limma)

Biological samples/Library preparation ] Step 1

] o=

Mapping/ -

Quantification

DGE with R
Functional
Analysis with R —

Step 3: Data Analysis




RNA-Seq led to the identification of hew subtypes
in B-ALL
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Motivation - Single cell level insights

Bulk RNA-seq Single cell RNA-seq

_—

Taste each fruit individually

Taste the :
average of all
fruits



Tissue

Bulk RNA- vs. single cell RNA-seq

Single-Cell Analysis

Bulk Analysis

Tk

Single-Cell input

Bulk RNA input

NN

Each cell type has a distinct

expression profile

Average gene expression
from all cells

>
»

==

Reveals heterogeneity
and subpopulation
expression variability of
thousands of cells

?

»

>

Cellular heterogeneity
masked



Single-Cell RNA-Seq

* Measures expression cell-by-cell

* Best for:

*» Identifying novel cell types/states

¢ Uncovering tumor heterogeneity

¢ Immune profiling

* Understanding treatment-resistant populations

* Pros: High-resolution
* Limitations: Expensive, technological challenges as the data is noisy

* Select scRNA-seq when you suspect heterogeneity matters



Single cell level SPATIAL insights

Spatial transcriptomics

Bulk RNA-seq Single cell RNA-seq

Taste each fruit individually

Taste the
average of
all fruits




Resolution

Data Format

Biological
Insights

Advantages/
Disadvantages

Bulk RNA
sequencing

—’

Patient-level gene
expression

Aggregated gene
expression from whole
tissue

Identifies differentially
expressed genes at the
tissue level

v High sensitivity for overall
gene expression

X No spatial or single-cell
resolution

Single-cell RNA
Sequencing

# ol

"y s e

Single-cell resolution

Gene expression at the
individual level

Identifies cell
subpopulations and
heterogeneity

v High resolution for
individual cell types

X Loses spatial context
and cell-cell interactions

High Throughput
Spatial Transcriptomics

cDNA synthesis Data analysis
R
L 8 S =
2 ‘ e
B = B o
il — 7'

Spatial and single-cell
resolution

Gene expression mapped to
2D tissue coordinates

Reveals spatially variable
genes, tissue structure, and
cell-cell interactions

v Preserves tissue
architecture and spatial
relationships

X Lower sensitivity for
minimally-expressed
genes



Experimental workflow

@ Samples of interest @ 'Sdatil_[__ __
A - o 5001 E=—— . S [_le__,»‘_ T —
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5 S 300
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PMID: 27548618 & ol-ewdieee

Cor'\trol 36/ 59 nfe'cted

Reads (R1 and R2)
generated



Biological Replicates

Experimental replicates can be performed as technical replicates or
biological replicates.

TECHNICAL BIOLOGICAL

0\ 0\
\ \\
A\ \\ -

./‘3)’:?}\ f) ( /I/;VA J J
\ e / I [~
) ——) ——2 — 2 =
\ ’/“ \ll ‘l
2 "/ .
n=1 n=3

Figure 16: Biological Replicates

Image credit: Klaus B.. EMBO J (2015) 34: 2727-2730



https://dx.doi.org/10.15252%2Fembj.201592958
https://dx.doi.org/10.15252%2Fembj.201592958
https://dx.doi.org/10.15252%2Fembj.201592958
https://dx.doi.org/10.15252%2Fembj.201592958
https://dx.doi.org/10.15252%2Fembj.201592958
https://dx.doi.org/10.15252%2Fembj.201592958
https://dx.doi.org/10.15252%2Fembj.201592958
https://dx.doi.org/10.15252%2Fembj.201592958
https://dx.doi.org/10.15252%2Fembj.201592958
https://dx.doi.org/10.15252%2Fembj.201592958

@ Technical replicates: usethe same biological sample to repeat
the technical or expernmental steps in order to accurately
measure technical variation and remove it during analysis.

@ Biological replicates use different biological samples of the
same condition to measure the biological variation between
samples.

Dr. Princess Rodriguez



Biological Replicates

++To detect Differentially
Expressed Genes (DEGs)

Condition 1 -between groups we should
have several samples,

which are also known as
biological replicates

Condition 2



Probability of detecting DEGs

Replicates per group

3 S 10

Fold change
2 87/% 98% 100%

|

PMID: 26813401



Grouping of Replicates

Hit

What you want

What you get



Grouping of Replicates

Bl
:

What you want

©@06) O
What you get /

That spare comes in handy
Highly recommend especially
with mice!




What causes this?
Confounding variables

A variable that influences or confounds the relationship between
an independent and dependent variable

controls

Independent :> Caneon.s f N Dependent
Variable - fbenes Variable
:> Condition B
Confounrding

Extraneous
Variables
Independent CAUSE
variables

controls Q

Dependent EFFECT

variables



Examples of confounding variables

16S rRNA gene:

Sample  DNA (and RNA) 16S rRNA gene Amplicon pooling and Data analysis
collection isolation PCR amplification lllumina sequencing
of variable 4 region

A new technician is
running the sequencer



Examples of confounding variables

16S rRNA gene:

Sample DNA (and RNA) 16SrRNAgene  Amplicon pooling and Data analysis
collection isolation PCR amplification  lllumina sequencing
of variable 4 region

Extracting DNA/RNA with
two different kits!



Examples of confounding variables

16S rRNA gene:

Sample DNA (and RNA) 16SrRNAgene  Amplicon pooling and Data analysis
collection isolation PCR amplification  lllumina sequencing
of variable 4 region

Sequencing on multiple
different types of platforms



Examples of confounding variables

16S rRNA gene:

Sample DNA (and RNA) 16SrRNAgene  Amplicon pooling and Data analysis
collection isolation PCR amplification  lllumina sequencing
of variable 4 region

Inappropriate
multiplexing strategy



Multiplexing
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ENCODE reported that gene expression was likely to
follow a species-specific rather tissue-specific pattern
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TheScientist

EXPLORING LIFE, INSPIRING INNOVATION NEWSSOPINION: MAGAZINE U

Reanalysis of Mouse ENCODE data suggests mouse and human genes are expressed in
tissue-specific, rather than species-specific, patterns.

May 19, 2015
JYOTI MADHUSOODANAN E ﬂ

Late last year, members of the Mouse ENCODE
consortium reported in PNAS that, across a wide

51 srange of tissues, gene expression was more likely to
follow a species-specific rather than tissue-specific
pattern. For example, genes in the mouse heart were
expressed in a pattern more similar to that of other
mouse tissues, such as the brain or liver, than the

human heart.

A, RAMA

But earlier this month, Yoav Gilad of the University of
Chicago called these results into question on Twitter. With a dozen or so 140-character dispatches
(including three heat maps), Gilad suggested the results published in PNAS were an anomaly—a result of
how the tissue samples were sequenced in different batches. If this “batch effect” was eliminated, he
proposed, mouse and human tissues clustered in a tissue-specific manner, confirming previous results
rather than supporting the conclusions reported by the Mouse ENCODE team.




Sequence study design (sequencer ID, run ID, lane number):

D87PMIN1 | D87PMIN1 | DALHBFN1 | MONK HWI-

(run 253, (run 253, (run 276, (run 312, EYERT]

lane 7) lane 8) lane 4) lane 6) 375, lane

7)

heart adipose adipose heart brain

kidney adrenal adrenal kidney pancreas

liver sigmoid  sigmoid liver brain
colon colon

small lung lung small spleen

bowel bowel

spleen ovary ovary testis ® human

testis pancreas ® mouse

Sequencing lane (a batch effect) was almost completely confounded with species in the PNAS study. From
@Y _Gilad



Before accounting for batch effect
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PC2 (12% variability)
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What does this all means?

 |ts sometimes impossible for bioinformaticians to
partition biological variation from technical variation,
when these two sources of variation are confounded.

« No amount of statistical sophistication can separate
confounded factors after'data have been collected.

« ...these confounding variables may or may not be in
your control!

A well-planned experiment with an additional
sample, does end up saving you time and money
down the road. Its up to you to recognize this!



Experimental workflow
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RNA composition

tRNAs
RNA comes in many Cz)%@ W &%

different flavors ShRNAs
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RNA composition

tRNAs
RNA comes in many %@ W &%

different flavors SNRNAs
* Ribosomal-related MIRNAS
RNAS: 5% snoRNAs
 RNA, tRNA,
snoRNA (up to 90%
of RNAS)
* Protein-coding RNAs: ‘ i
« MRNA -

* Regulatory RNAs:
* microRNAs,
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messenger RNA
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The RNA sample
undergoes either selection
of the mMRNA (polyA -

RNAs
selection) or depletion of the %% g‘%ﬁ

rRNA. The resulting RNA is o IncRNAs

fragmented. (SIRNAS D snoRNAs

. messenger RNA
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Poly-A versus rRNA depletion?

* If you are aiming to obtain information about long
non-coding RNAs | recommend performing
ribosomal RNA depletion

 Bacterial mMRNAs are also not poly-adenylated

TTTTT D
9 AAAAA

TTTTT




lllumina Library preparation
(1) mRNA or total RNA

[ — [
[r—
[———
 —

(2) Remove contaminant DNA
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(3) Fragment RNA
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(4) Reverse transcribe

into cDNA

ENEEEEEEE.
s PR el — =S
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Another consideration is whether to
generate strand-preserving libraries

Libraries can be stranded or unstranded

The implication of stranded libraries is that you
could distinguish whether the reads are derived
from forward or reverse-encoded transcripts



Homo sapiens GROKIF chr7:138613037-140392601 (1.77Mbp)
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Experimental workflow
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Two main approaches in NGS:
short-read vs long-read

THE EVOLUTION OF SEQUENCING

First Seconq Third
Generation _Generation Generation
Sanger Sequencing 454, Solexa, lon Torrent, PacBio, Oxford Nanopore

Maxam and Gilbert lllumina °=

Sanger Chain-termination

= Infer nucleotide identity = High throughput from the . Sequ‘ence pati\{e DNAin

using dNTPs then visualize ~  parallelization of sequencing real time with single-

with electrophoresis reactions molecule resolution
- 500-1000 bp fragments - High accuracy = Traditionally lower accuracy
- Relatively slow and - ~50-500 bp fragments than NGS

oxpensive - Faster and more affordable = Tens of kb fragments, on

average
\ d 3 J
| 1
Short-read sequencing Long-read sequencing

The bioinformatic pipeline for these are different!



Single-end versus Paired-end

After preparation of the libraries, sequencing can be performed to
generate the nucleotide sequences of the ends of the fragments,
which are called reads. You will have the choice of sequencing a
single end of the cDNA fragments (single-end reads) or both ends of
the fragments (paired-end reads).

Read1

—

Insert
Read2

Figure 10: Paired End Reads

@ SE => Only Read1 => one FASTQ file/sample
@ PE => Read1+ Read2=>two FASTQ files/sample

Dr. Princess Rodriguez




What is the Advantage of Longer and PE Reads?

» Reads mapping to junctions

> With longer reads we will have more reads
spanning exons

> Isoforms or distinguishing paralogs

» Paired end reads

Knowing both ends of a fragment and an approximation of
fragment size helps to determine the transcript from
which it was derived.



In Summary, to quantify Differential Gene
Expression

» Technology: lllumina

* Read length: 50bp to 300 bp

* Paired vs single end: doesn’t matter but
Important to note

 Number of reads: > 15 million per sample

» Replicates: 3 biological replicates
minimum

A well-planned experiment goes a long way!
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Black Trail
UG credentials:
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Research
Question

bioinformatics
Due to the strong relationship between
the kidney and the heart, which
differentially expressed genes in bear
kidneys are related to cardiac pathways?
Bear Kidney Samples

Fall Spring

season
fall
o spring

1 sample
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Up-regulated (79)

Down-regulated (87)




Design

“Aiming at elucidating how L. plantarum regulates and shapes its it 2k Pt it Pt e
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Environmental Microbiology (2018) 20(10), 3700-3716 Go10,9111/1462-2620.14372

How Lactobacillus plantarum shapes its transcriptome

in response to contrasting habitats
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Triplets from nine model media:

A. mellifera L. worker bees

D. melanogaster

Human omnivore and vegan feces
Table olives

Tomato and pineapple juices
Wheat flour hydrolysate

Cheese broth.
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Later cultivation on MRS broth with two reference strains: WCFS1 and LB16
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HW #5 (Due Feb 20t

For this homework assignment, please identify the
primary research article and samples you would
like to perform this bioinformatic reanalysis on.

Keep in mind that each reanalysis will be performed
with a specific, larger “goal” in mind.

These goals are specific to the trail selected and can
be broadly summarized as: 1) to replicate the findings
from the authors (Green Mountain), 2) alter the
bioinformatic pipeline and understand how this
impacts the final findings (Blue Sky), or 3) use the
dataset to test an original hypothesis (Black
Diamond).
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