
Wild Cards & Nano
A Beginner’s Guide

Dr. Princess Rodriguez

2025-01-22

Contents

1 Learning Objectives 2

2 Wild cards 2
2.1 Command History . 4
2.2 The “?” wildcard . 5

3 Examining Files 6
3.1 less command . 8
3.2 head and tail commands . 9

4 Good names for files and directories 10

5 Writing files 11
5.1 Command-line editors . 12
5.2 Nano . 12

6 Summary: Commands, options, and keystrokes covered 15

7 Citation 16

1

1 Learning Objectives

• Learn to use tab completion to simplify typing file and directory paths.

• Use of the asterisk * wildcard to match and select multiple files in a directory.
• View the contents of a file using commands such as less, head, or cat.
• Use Nano, a simple text editor, to create and edit files directly from terminal.

Class Exercise

Please complete the following class activity below. You will have ~5 minutes to complete.

[Class-activity](https://forms.gle/6L5eDqiiLijc8i6H8)

2 Wild cards

The “*” wildcard:
Navigate to the ~/unit1_unix/raw_fastq directory. This directory contains
FASTQ files and these files contain the sequencing reads (nucleotide sequences)
output from a high throughput sequencer.

Figure 1: Typical NGS workflow

Let’s see what is inside:

2

ls

Irrel_kd_1.subset.fq Irrel_kd_2.subset.fq Irrel_kd_3.subset.fq Mov10_oe_1.subset.fq Mov10_oe_2.subset.fq Mov10_oe_3.subset.fq

Let’s take a moment to point a few things out:

• .fq vs .fastq
• .gz

.gz is a file format used for compressed files. This is especially impor-
tant when dealing with large data.

Class Exercise

Create a directory called ‘fastq‘ in ‘~/unit1_unix/raw_fastq‘ directory. Then check to see that it was created.

The * or wildcard character is a shortcut for “everything”.
You can use the * by typing in shift + 8.

ls * .fq

Notice, this lists every file that ends with a fq and our newly made
directory fastq is missing.

Irrel_kd_1.subset.fq Irrel_kd_3.subset.fq Mov10_oe_2.subset.fq
Irrel_kd_2.subset.fq Mov10_oe_1.subset.fq Mov10_oe_3.subset.fq

3

2.1 Command History

You can easily access previous commands by hitting the up arrow key on your
keyboard, this way you can step backwards through your command history. On
the other hand, the down arrow key takes you forward in the command history.
Try it out! While on the command prompt hit the up arrow a few
times, and then hit the down arrow a few times until you are back to
where you started.
You can also review your recent commands with the history command. Just
enter:

history

You should see a numbered list of commands, including the history command
you just ran!

The wildcard * can be placed anywhere in your pattern. For example:

ls Mov10* fq

This lists only the files that begin with ‘Mov10’ and end with fq.

Mov10_oe_1.subset.fq Mov10_oe_2.subset.fq Mov10_oe_3.subset.fq

So how does this actually work? The Shell (bash) considers an asterisk * to be
a wildcard character that can match one or more occurrences of any character,
including no character. In the example above the * took place of 13 characters!

Tip - An asterisk/star is only one of the many wildcards in Unix, but
this is the most powerful one and we will be using this one the most
for our exercises.

4

2.2 The “?” wildcard

Another wildcard that is sometimes helpful is ?

• ? is similar to * except that it is a placeholder for exactly one position.

• Recall that * can represent any number of following positions, including no
positions.

• To highlight this distinction lets look at a few examples. First, try this
command:

ls /bin/d*

This will display all files in /bin/ that start with “d” regardless of length. The
bin directory is where some built-in programs are stored. However, if you only
wanted the things in /bin/ that start with “d” and are two characters long then
you can use:
ls /bin/d?

Lastly, you can chain together multiple “?” marks to help specify a length. In the
example below, you would be looking for all things in /bin/ that start with a “d”
and have a name length of three characters.
ls /bin/d??

!!! example “Class Exercise”

Perform each of the following tasks using a single ‘ls‘ command *without* navigating to a different directory.

1. List all of the files in ‘/bin‘ that start with the letter ’c’

2. List all of the files in ‘/bin‘ that contain the letter ’a’

3. List all of the files in ‘/bin‘ that end with the letter ’o’

4. BONUS: List all of the files in ‘/bin‘ that start with ’ch’ and are only 5 letters in length.

5

Answers
Click each question below to reveal the answer.
Question 1
ls /bin/c*
Question 2
ls /bin/a
Question 3
ls /bin/*o
BONUS
ls /bin/ch???

3 Examining Files

Now let’s explore a few more commands to examine files.

3.0.1 cat command

The easiest way to examine a file is to print out all of its contents us-
ing the command cat. We can test this out by printing the contents of
~/unit1_unix/other/sequences.fa

cat sequences.fa

The cat command prints out the all the contents of sequences.fa to the screen.

cat stands for catenate; it has many uses and printing the contents of
a files onto the terminal is one of them.

What does this file contain?

6

>SRR014849.1 EIXKN4201CFU84 length=93
GGGGGGGGGGGGGGGGCTTTTTTTGTTTGGAACCGAAAGGGTTTTGAATTTCAAACCCTTTTCGGTTTCCAACCTTCCAAAGCAATGCCAATA

>gi|340780744|ref|NC_015850.1| Acidithiobacillus caldus SM-1 chromosome, complete genome
ATGAGTAGTCATTCAGCGCCGACAGCGTTGCAAGATGGAGCCGCGCTGTGGTCCGCCCTATGCGTCCAACTGGAGCTCGTCACGAG
TCCGCAGCAGTTCAATACCTGGCTGCGGCCCCTGCGTGGCGAATTGCAGGGTCATGAGCTGCGCCTGCTCGCCCCCAATCCCTTCG
TCCGCGACTGGGTGCGTGAACGCATGGCCGAACTCGTCAAGGAACAGCTGCAGCGGATCGCTCCGGGTTTTGAGCTGGTCTTCGCT
CTGGACGAAGAGGCAGCAGCGGCGACATCGGCACCGACCGCGAGCATTGCGCCCGAGCGCAGCAGCGCACCCGGTGGTCACCGCCT
CAACCCAGCCTTCAACTTCCAGTCCTACGTCGAAGGGAAGTCCAATCAGCTCGCCCTGGCGGCAGCCCGCCAGGTTGCCCAGCATC
CAGGCAAATCCTACAACCCACTGTACATTTATGGTGGTGTGGGCCTCGGCAAGACGCACCTCATGCAGGCCGTGGGCAACGATATC
CTGCAGCGGCAACCCGAGGCCAAGGTGCTCTATATCAGCTCCGAAGGCTTCATCATGGATATGGTGCGCTCGCTGCAACACAATAC
CATCAACGACTTCAAACAGCGTTATCGCAAGCTGGACGCCCTGCTCATCGACGACATCCAGTTCTTTGCGGGCAAGGACCGCACCC

>gi|129295|sp|P01013|OVAX_CHICK GENE X PROTEIN (OVALBUMIN-RELATED)
QIKDLLVSSSTDLDTTLVLVNAIYFKGMWKTAFNAEDTREMPFHVTKQESKPVQMMCMNNSFNVATLPAE

This is a FASTA file. FASTA format is a text-based format for rep-
resenting either nucleotide or peptide sequences. The structure of a
FASTA file is represented below where the header row always begins
with the “>” symbol.

Figure 2: Fasta Example

Question: What command would I use to clear my terminal screen?

7

Answer
Ctrl + L

3.1 less command

cat is a terrific command, but notice what it is doing. It is PRINTING the file
contents on the screen.
When the file is really big and has a ton of lines, this can be cumbersome to use.
In practice, when you are running your analyses on the command-line you will
most likely be dealing with large files so you need to learn how to view them.
Instead, we will use the less command

less Mov10_oe_1.subset.fq

Rather than printing to screen, the less command opens the file in a new buffer
allowing you to navigate through it. Does this look familiar? You might remember
encountering a similar interface when you used the man command. This is because
man is using the less command to open up the documentation files! The keys
used to move around the file are identical to the man command. Below we have
listed some additional shortcut keys for navigating through your file when using
less.
Shortcuts for less

key action
SPACE to go forward
b to go backwards
g to go to the beginning of the file
G to go to the end of a file
q to quit or exit less

Use the shortcut keys to move through your FASTQ file, we will explore these files
in more detail later in the workshop.

8

3.1.1 Searching files with less

less also gives you a way of searching through files.
Just type in / to begin a search, you will see that the / will show up at the bottom
of the less buffer. Let’s say you are interested in searching for the following
8-letter adapter sequence:

/GGGATAA

Enter the name of the string of characters you would like to search for and hit the
enter key. The interface will move to show you the location where that string is
found, and highlight the string.
If you hit / then ENTER, less will just repeat the previous search.
less searches from the current location and works its way forward. For instance,
the sequence GGCGAATT was found in our file, but if we started the search at the
end of the file, less will not find it. You need to go to the beginning of the file
and search.
To exit hit q.

3.2 head and tail commands

There is another way that we can peek inside files. In particular, if we just want
to see the beginning or end of the file to see how it’s formatted.
The commands are head and tail and they just let you look at the beginning and
end of a file respectively.

head Mov10_oe_1.subset.fq

tail Mov10_oe_1.subset.fq

By default, the first or last 10 lines will be printed to screen. The -n option can
be used with either of these commands to specify the number n lines of a file to
display. For example, let’s print the first/last line of the file:

head -n 20 Mov10_oe_1.subset.fq

tail -n 20 Mov10_oe_1.subset.fq

9

4 Good names for files and directories

Complicated names of files and directories can make your life painful when working
on the command line. Here we provide a few useful tips for the names of your files
and directories.

Don’t use spaces.

Spaces can make a name more meaningful, but since spaces are used to separate
arguments on the command line it is better to avoid them in names of files and
directories. You can use - or _ instead (e.g. fastq-data-files/ rather than fastq data
files/). To test this out, try typing mkdir fastq data files and see what directory
(or directories!) are made when you check with ls -F.

1. Don’t begin the name with - (dash).

2. Don’t begin the name with numbers.

3. Stick with letters in the beginning and then use numbers, . (period), - (dash),
or an _ (underscore) in the middle of the file or directory name.

You may have noticed by now that all the files we are using are named ‘something
dot something’.

• This is just a convention; we can call a file mythesis or almost anything else
we want. However, most people use two-part names most of the time to help
them (and their programs) tell different kinds of files apart.

Figure 3: File Extension

• The second part of such a name is called the filename extension and indicates
what type of data the file holds: .txt signals a plain text file, .pdf indicates
a PDF document, .png is a PNG image, and so on.

• This is just a convention, albeit an important one. Files merely contain
bytes; it’s up to us and our programs to interpret those bytes according to
the rules for plain text files, PDF documents, configuration files, images, and
so on.

10

• However, naming a PNG image of a whale as whale.mp3 doesn’t somehow
magically turn it into a recording of whale song, though it might cause the op-
erating system to associate the file with a music player program. In this case,
if someone double-clicked whale.mp3 in a file explorer program,the music
player will automatically (and erroneously) attempt to open the whale.mp3
file.

Figure 4: Whale.mp3

5 Writing files

We’ve been able to do a lot of work with files that already exist, but what if we
want to create our own files?
In order to create or edit files we will need to use a text editor. When we say,
“text editor,” we really do mean “text”. These editors can only work with plain
character data, not tables, images, or any other media. Text editors can generally
be grouped into two categories: command-line editors and graphical user
interface editors.

11

5.1 Command-line editors

Some popular editors include:

• Emacs
• Vim
• Gedit

These are editors which are generally available for use on high-performance com-
pute clusters. There are also simpler editors available for use on the cluster
(e.g. Nano), but tend to have limited functionality. We will use Nano in this
lesson.

5.2 Nano

Nano is a simple text editor for UNIX/Linux operating systems. Nano is easy-to-
use but has its’ limitations.

5.2.1 Creating or editing a file with Nano

To create a new file or edit an existing one type:

nano filename

Type the following in your terminal:

nano colors.txt

After pressing the Enter key, the nano editor appears. Notice the following ele-
ments:

• the top line displays the version of nano in the left corner and the name of
the file being edited

• the 3rd line from the bottom indicates the status of the file you’re editing;
it shows that color.txt is a “New File”

• the last two lines of the screen present a menu of useful shortcuts for nano.
They all will require you to use the control button on your laptop.

12

http://www.gnu.org/software/emacs/
http://www.vim.org/
http://projects.gnome.org/gedit/
http://www.nano-editor.org/

Figure 5: Nano Screen

At this point we can begin typing:

red
blue
yellow

Notice that after your first keystroke, the word “Modified appears in the upper-
right corner. This shows that you have changed the contents of your file but it has
not been saved yet.

• Saving your work: To save your edited file to disk, press Ctrl-o. Nano
displays the current filename. (To save the file under a different name, delete
the filename that Nano displays and type a new one.) Press Enter.

• Exiting Nano: To exit Nano, press control + x. If you made any changes
since the last save, Nano will ask whether or not to save them. Type y for
yes or n for no. Press Enter.

13

Figure 6: Nano Screen - Modified

Figure 7: Saving with Nano

14

5.2.2 Summary Basic nano commands

key action
control + X exit from the editor
control + A Let’s you jump from the beginning of the line
control + E Let’s you jump from the end of the line
control + V Scroll page down
control + Y Scroll page up
control + O Save the file
control + K It cuts the entire selected line

Class Exercise

You will have ~5 minutes to complete

1. Make a copy of ‘get-pip.py‘ from this location ‘/gpfs1/cl/mmg3320/course_materials/tutorials‘ and save in the ‘~/unit1_unix/other‘ directory.
2. Open ‘get-pip.py‘
3. Copy and paste the 3rd line as the answer for the final participation grade question
4. Exit and return to terminal

6 Summary: Commands, options, and keystrokes
covered

The wildcard *

• can represent zero or more other characters
• can be placed anywhere in your pattern

~ # home dir
. # current dir
.. # parent dir
* # wildcard

15

ctrl + c # cancel current command
ctrl + a # start of line
ctrl + e # end of line
ctrl + l # clear your terminal screen
history
cat # prints out the all the contents of file
less # allows you to view and move through file content
head # allows you to view beginning of file
tail # allows you to view end of file

7 Citation

This lesson has been developed by members of the teaching team at the Harvard
Chan Bioinformatics Core (HBC). These are open access materials distributed
under the terms of the Creative Commons Attribution license (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

• The materials used in this lesson were derived from work that is Copyright
© Data Carpentry (http://datacarpentry.org/). All Data Carpentry instruc-
tional material is made available under the Creative Commons Attribution
license (CC BY 4.0).

• Adapted from the lesson by Tracy Teal. Original contributors: Paul Wilson,
Milad Fatenejad, Sasha Wood and Radhika Khetani for Software Carpentry
(http:// software-carpentry.org/)

• Other Authors include: Sheldon McKay, Mary Piper, Radhika Khetani,
Meeta Mistry, Jihe Liu, Mary Piper, Meeta Mistry, Jihe Liu, & Will
Gammerdinger

16

http://bioinformatics.sph.harvard.edu/
http://bioinformatics.sph.harvard.edu/
https://creativecommons.org/licenses/by/4.0/
http://datacarpentry.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://software-carpentry.org/

	Learning Objectives
	Wild cards
	Command History
	The ``?'' wildcard

	Examining Files
	less command
	head and tail commands

	Good names for files and directories
	Writing files
	Command-line editors
	Nano

	Summary: Commands, options, and keystrokes covered
	Citation

