
Searching & Redirection
A Beginner’s Guide

Dr. Princess Rodriguez

2025-01-26

Contents

1 Learning objectives 2

2 Searching files with grep command 2
2.1 Class Exercise . 3
2.2 Class Exercise Discussion . 4
2.3 Other useful options for grep . 4

3 Searching within FASTQ files with grep 5
3.1 Class Exercise #2 . 7
3.2 Group separators (--), and how to remove them 7
3.3 Which line number has a match? 8
3.4 Class Exercise #3 . 9

4 Redirection 9
4.1 Redirecting with > AKA “Greater-than sign” 9
4.2 Redirecting (and appending) with >> 10

5 Passing output to another command with | (or pipe) 11
5.1 The Power of Pipes . 12
5.2 Practice with searching and piping/redirection 13

1

6 Introducing the GTF file format 13

7 Cut & Sort 15

8 Summary 16

9 Citation 16

1 Learning objectives

• Search for characters or patterns in a text file using the grep command
• Write to and append a file using output redirection
• Use of pipe (|) character

– How can I combine existing commands to do new things?

2 Searching files with grep command

In the same way that many of us now use ‘Google’ as a verb meaning ‘to find’,
UNIX programmers often use the word grep.

• grep is a contraction of ‘global/regular expression/print’, a common se-
quence of operations in early UNIX text editors. It is also the name of a
very useful command-line program.

• grep allows you to search plain-text files without opening them.

The syntax for grep is as follows:

grep search-term filename

The pattern that we want to search is specified in the search-term slot, and the
file we want to search within is specified in the filename slot. Let’s generate a
file to try this on first!

2

2.1 Class Exercise

You will have ~5 minutes to complete.
NOTE: It is never my intention to rush you. If you do find you need more time to participate, please let me know.

1. Copy the following text into a text file. Name the text file haiku.txt.

> It might be good to make a folder called *class-exercises* or something like that for activities like this moving forward!

‘‘‘bash
The Tao that is seen
Is not the true Tao, until
You bring fresh toner.

With searching comes loss
and the presence of absence:
"My Thesis" not found.

Yesterday it worked
Today it is not working
Software is like that.
‘‘‘

2. Now that you have haiku.txt created save and exit the text editor.

3. On your terminal try the following command:

‘‘‘bash
grep not haiku.txt
‘‘‘

4. Copy-and-paste the output from this command as an answer in the class-activity quiz.

5. Now try the following command:

‘‘‘bash
grep Not haiku.txt
‘‘‘

6. Finally, try the following command:

‘‘‘bash
grep The haiku.txt
‘‘‘

3

2.2 Class Exercise Discussion

In the above exercise, not was the first pattern we were searching for. The grep
command searches through the file, and then looks for matches to the pattern
specified. To use it you typed grep, then the pattern you were searching for and
finally the name of the file (or files) you were searching in.

• You also would have noticed that by default grep searches for a pattern in
a case-sensitive way.

• Finally, you would have saw upon completing #6, the search pattern we have
selected does not have to form a complete word or phrase as the following
where two results:

– The Tao
– My Thesis

2.3 Other useful options for grep

To restrict matches to lines containing the word The on its own, we can give grep
the -w option. This will limit matches to word boundaries.

grep -w

Sometimes we don’t want to search for a single word, but for a phrase. We can
also do this by putting the phrase in quotes:

grep "is not" haiku.txt

Another useful option is -n which numbers the lines that match:

grep -n "it" haiku.txt

Here, we can see that lines 5, 9, and 10 contain the letters ‘it’.
grep has lots of other options. To find out what they are, we can type:

4

grep --help

3 Searching within FASTQ files with grep

The Next-Generation Sequencing (NGS) technologies all rely on a complex in-
terplay of chemistry, hardware and optical sensors. Adding to this complexity is
software to analyze the sensor data to predict the individual bases. This last step
in the process is referred to as base-calling. Below is figure from Cancer Biology
& Medicine which shows the importance of base-calling in variant analysis. Base-
calling algorithms process the raw signal to decode the sequence of bases within
strands of DNA or RNA into data stored in BAM or FASTQ files.

Figure 1: Basecalling

5

https://www.cancerbiomed.org/content/13/1/3
https://www.cancerbiomed.org/content/13/1/3

Summary of technical validity and clinical utility assessment for cancer NGS. (A)
NGS basecalling, wherein a DNA sequence and corresponding confidence score
is generated from a nuclear genomic DNA template. (B) The next step, which
compares all available data to the reference and each other. Variant calling is then
performed (underlined bases in panel B), comparing base calls across many reads;
many false positive variant calls (x’ed out bases) can be filtered, while true positives
(circled bases) should generate a strong signal. (C) Multiple quality metrics are
generated during variant calling, which can be compared to cutoffs established
during assay validation (dashed lines). (D) Detailed review of available databases
and literature (left side) and comparison to clinical history and tumor pathology
(right side) to assess clinical utility. VAF, variant allele frequency; QUAL, variant
call quality; COSMIC, Catalogue of Somatic Mutations in Cancer; TKIs, tyrosine
kinase inhibitor therapies.
FASTQ files contain the sequencing reads (nucleotide sequences) output from a
high throughput sequencer. Each sequencing read in a FASTQ file is associated
with four lines, with the first line (header line) always starting with an @ symbol.
A whole FASTQ record for a single read should appear similar to the following:

@HWI-ST330:304:H045HADXX:1:1101:1111:61397
CACTTGTAAGGGCAGGCCCCCTTCACCCTCCCGCTCCTGGGGGANNNNNNNNNNANNNCGAGGCCCTGGGGTAGAGGGNNNNNNNNNNNNNNGATCTTGG
+
B?@DDDDDDHHH?GH:?FCBGGB@C?DBEGIIIIAEF;FCGGI###

More information about the FASTQ file format

Line Description
1 Read name preceded by ‘@’
2 The actual DNA sequence
3 Read name (same as line 1) preceded by a ‘+’ or just a

‘+’ sign
4 String of characters which represent the quality score of

each nucleotide in line 2; must have same number of
characters as line 2

So what happens if the sequencer is unable to make a decision on which base (A,
G, C, T) is the correct one? In this case, the sequencer will designate an N.

6

3.1 Class Exercise #2

Let’s suppose we want to see how many reads in our file ‘Mov10_oe_1.subset.fq‘ contain "bad" data, i.e. reads with 10 consecutive Ns (‘NNNNNNNNNN‘). Go ahead and perform the command for this.

Notice, that this output will only return the lines that contain the NNNNNNNNNN.
However, each read in the FASTQ file is made up of 4 lines (as discussed above).
So what if we wanted to see the whole FASTQ record for each of the reads?
We would need to modify the default behavior of grep and specify additional
argument/options.
The -B and -A arguments are useful to return the matched line plus one before
(-B 1) and two lines after (-A 2). Therefore, using these arguments will return
the whole read record.

grep -B 1 -A 2 NNNNNNNNNN Mov10_oe_1.subset.fq

@HWI-ST330:304:H045HADXX:1:1101:1111:61397
CACTTGTAAGGGCAGGCCCCCTTCACCCTCCCGCTCCTGGGGGANNNNNNNNNNANNNCGAGGCCCTGGGGTAGAGGGNNNNNNNNNNNNNNGATCTTGG
+
@?@DDDDDDHHH?GH:?FCBGGB@C?DBEGIIIIAEF;FCGGI###
--
@HWI-ST330:304:H045HADXX:1:1101:1106:89824
CACAAATCGGCTCAGGAGGCTTGTAGAAAAGCTCAGCTTGACANNNNNNNNNNNNNNNNNGNGNACGAAACNNNNGNNNNNNNNNNNNNNNNNNNGTTGG
+
?@@DDDDDB1@?:E?;3A:1?9?E9?<? DGCDGBBDBF@;8DF###

3.2 Group separators (--), and how to remove them

You will notice that when we use the -B and/or -A arguments with the grep
command, the output has some additional lines with dashes (--), these dashes
work to separate your returned “groups” of lines and are referred to as “group
separators”. This might be problematic if you are trying to maintain the FASTQ
file structure or if you simply do not want them in your output. Using the argument
--no-group-separator with grep will disable this behavior:

7

grep -B 1 -A 2 --no-group-separator NNNNNNNNNN Mov10_oe_1.subset.fq

Now your output should be returned as:

@HWI-ST330:304:H045HADXX:1:1101:1111:61397
CACTTGTAAGGGCAGGCCCCCTTCACCCTCCCGCTCCTGGGGGANNNNNNNNNNANNNCGAGGCCCTGGGGTAGAGGGNNNNNNNNNNNNNNGATCTTGG
+
@?@DDDDDDHHH?GH:?FCBGGB@C?DBEGIIIIAEF;FCGGI###
@HWI-ST330:304:H045HADXX:1:1101:1106:89824
CACAAATCGGCTCAGGAGGCTTGTAGAAAAGCTCAGCTTGACANNNNNNNNNNNNNNNNNGNGNACGAAACNNNNGNNNNNNNNNNNNNNNNNNNGTTGG
+
?@@DDDDDB1@?:E?;3A:1?9?E9?<? DGCDGBBDBF@;8DF###

3.3 Which line number has a match?

A useful option is the -n option which will print out the line number from the file
for the match. Add this option to the previous command:

grep -B 1 -A 2 --no-group-separator -n NNNNNNNNNN Mov10_oe_1.subset.fq

This would return the output:

861213-@HWI-ST330:304:H045HADXX:1:1101:1111:61397
861214:CACTTGTAAGGGCAGGCCCCCTTCACCCTCCCGCTCCTGGGGGANNNNNNNNNNANNNCGAGGCCCTGGGGTAGAGGGNNNNNNNNNNNNNNGATCTTGG
861215-+
861216-@?@DDDDDDHHH?GH:?FCBGGB@C?DBEGIIIIAEF;FCGGI###
861953-@HWI-ST330:304:H045HADXX:1:1101:1106:89824
861954:CACAAATCGGCTCAGGAGGCTTGTAGAAAAGCTCAGCTTGACANNNNNNNNNNNNNNNNNGNGNACGAAACNNNNGNNNNNNNNNNNNNNNNNNNGTTGG
861955-+
861956-?@@DDDDDB1@?:E?;3A:1?9?E9?<? DGCDGBBDBF@;8DF###

A small thing you should note is that when using the -n option, lines that
have a : after the line number correspond to the lines with the match (e.g
861214:CACTTGTAAGGGCAGGCCCCCTTCACCCTCCCGCTCCTGGGGGANNNNNNNNNNANNN...),
while lines with a - after the line number are the surrounding lines retrieved when
using the -A and/or -B options (e.g. 861213-@HWI-ST330:304:H045HADXX:1:1101:1111:61397).

8

3.4 Class Exercise #3

1. Using ‘grep‘ search for the sequence CTCAATGAGCCA in ‘Mov10_oe_1.subset.fq‘. How many sequences do you find? Use the ‘-n‘ argument to distinguish the number of reads that contain this sequence.

2. How can you modify the command you typed above so that your search also returns the name of the sequence?

3. If you want to search for the above sequence in **all** Mov10 replicate fastq files, what command would you use?

<details>
<summary><i>Answers</i></summary>
<p><i>Question 1</i>

<code>grep -n CTCAATGAGCCA Mov10_oe_1.subset.fq</code>

The output returns 5 sequences.</p>
<p><i>Question 2</i>

<code>grep -B 1 CTCAATGAGCCA Mov10_oe_1.subset.fq</code></p>
<p><i>Question 3</i>

<code>grep CTCAATGAGCCA Mov10*</code>

The output returns 5 sequences for Mov10_oe_1 and 3 sequences for Mov10_oe_2.</p>

</details>

4 Redirection

When we use grep, the matching lines are displayed in the Terminal (also called
Standard Output or stdout). If the result of the grep search contains only a
few lines, we can easily read them. However, if the output is very long, the lines
will keep scrolling, and we’ll only be able to see the last few lines on the screen.
You might have experienced this when searching for the pattern NNNNNNNNNN.
So, how can we capture this output and save it for later review instead of letting
it scroll past in the Terminal?
We can achieve this using redirection. Redirection allows us to send the output
from the Terminal to another destination. In this case, we can save the output to
a file, which lets us examine it at our convenience.

4.1 Redirecting with > AKA “Greater-than sign”

The redirection command for writing something into a file is >.

9

Figure 2: Redirection

Let’s put all the sequences that contain NNNNNNNNNN from the Mov10_oe_1.subset.fq
into another file called bad_reads.txt.

grep -B 1 -A 2 NNNNNNNNNN Mov10_oe_1.subset.fq > bad_reads.txt

Now you should have a new file called bad_reads.txt in the raw_fastq directory.

ls -l

Take a look at the file and see if it contains what you think it should.

NOTE: If we already had a file named bad_reads.txt in our directory,
it would have overwritten it without any warning!

4.2 Redirecting (and appending) with >>

The redirection command for appending something to an existing file
is >>.
If we use >> it will append to the existing content in a file rather than overwrite
it. This can be useful for saving more than one search. For example, the following
command will append the bad reads from Mov10_oe_2 to the bad_reads.txt
file that we just generated.

10

grep -B 1 -A 2 NNNNNNNNNN Mov10_oe_2.subset.fq >> bad_reads.txt
ls -l

Did the size of the bad_reads.txt file change? How do we explain this?

Figure 3: Appending

5 Passing output to another command with | (or
pipe)

The vertical bar or pipe key | is very likely not something you use very often. It
is on the same key as the back slash, right above the (Enter/Return)key.
What | does is take the output from one command and runs it through the com-
mand specified after it.
First, to really see the benefit let’s type the following command again:

grep -B 1 -A 2 NNNNNNNNNN Mov10_oe_1.subset.fq

Notice that we are at the end of the document automatically. It just
whizzed on by! And if we wanted to find the first line, it get’s messy
and “jumpy” - there are even gaps!

11

Now let’s pipe the output of grep command to less. This will allow us to
slowly scroll through the entire document using the up and down arrows!

grep -B 1 -A 2 NNNNNNNNNN Mov10_oe_1.subset.fq | less

Remember to use q to get out of less

Or let’s say we are interested in the first few lines, we could do the following:

grep -B 1 -A 2 NNNNNNNNNN Mov10_oe_1.subset.fq | head -n 5

Another thing we can also do is count the number of lines output by grep.
We will introduce another command called wc. The wc command stands for word
count. This command counts the number of lines, words and characters in the text
input given to it. The -l argument will only count the number of lines instead of
counting everything.

grep -B 1 -A 2 NNNNNNNNNN Mov10_oe_1.subset.fq | wc -l

There are a total of 148 lines that are shown as the output.
How many lines contain NNNNNNNNNN in the document Mov10_oe_1.subset.fq?

5.1 The Power of Pipes

• The pipe is a very important/powerful concept in Shell
• You can string along as many commands together as you like

The philosophy behind the three redirection operators (>, >>, |) you have learned
so far is that none of them by themselves do a lot. BUT when you start chaining
them together, you can do some really powerful things really efficiently.
To be able to use the shell effectively, becoming proficient in the use of
the pipe and redirection operators is essential.

12

Figure 4: Power of Pipes

5.2 Practice with searching and piping/redirection

Let’s use the new commands in our toolkit and a few new ones to examine the
gene annotation file chr1-hg19_genes.gtf. We will be using this file to find the
genomic coordinates of all known exons on chromosome 1. This file is located in
the following directory:

~/unix_lesson/reference_data/

6 Introducing the GTF file format

Let’s explore our chr1-hg19_genes.gtf file a bit. What information does it con-
tain?

head -10 chr1-hg19_genes.gtf | less -S

chr1 unknown exon 14362 14829 . - . gene_id "WASH7P"
chr1 unknown exon 14970 15038 . - . gene_id "WASH7P"
chr1 unknown exon 15796 15947 . - . gene_id "WASH7P"
chr1 unknown exon 16607 16765 . - . gene_id "WASH7P"

13

chr1 unknown exon 16858 17055 . - . gene_id "WASH7P"
chr1 unknown exon 17233 17368 . - . gene_id "WASH7P"
chr1 unknown exon 17606 17742 . - . gene_id "WASH7P"
chr1 unknown exon 17915 18061 . - . gene_id "WASH7P"
chr1 unknown exon 18268 18366 . - . gene_id "WASH7P"
chr1 unknown exon 24738 24891 . - . gene_id "WASH7P

The GTF (Gene Transfer Format) file is a tab-delimited file with
information arranged in a very specific manner, usually for NGS anal-
ysis. That information is specifically about all the various entities or
features found in a genome; in this case, on chromosome 1.

The columns in the GTF file contain the genomic coordinates (location)
of gene features (exon, start_codon, stop_codon, CDS) along with the
associated gene_names, transcript_ids and protein_ids (p_id).

Line Description
1 chromosome number
2 source, name of program that generated the feature - its

“unknown” above
3 feature type name
4 start position of feature
5 end position of feature
6 score
7 strand, defined at + (forward) or - (reverse)
8 frame
9 attribute, provides additional information about each

feature

For more information on this file format, check out the Ensembl site.

Given our understanding of splice isoforms, we know that a given exon can be part
of 2 or more different transcripts generated from the same gene. In a GTF file,
this exon will be represented multiple times, once for each transcript (or splice
isoform). For example,

grep PLEKHN1 chr1-hg19_genes.gtf | less -S

This search returns two different transcripts of the same gene, NM_001160184 and
NM_032129, that contain the same exon.

14

http://useast.ensembl.org/info/website/upload/gff.html

7 Cut & Sort

• cut is a command that extracts columns from files.

We will use cut with the -f argument to specify which specific fields or columns
from the dataset we want to extract. Let’s say we want to get the 1st column
(chromosome number) and the 4th column (starting genomic position) and 5th
column (ending genomic position) from chr1-hg19_genes.gtf file, we can say:

grep PLEKHN1 chr1-hg19_genes.gtf | cut -f 1,4,5 | head

How can we output this to a different document?

grep PLEKHN1 chr1-hg19_genes.gtf | cut -f 1,4,5 > coordinates_PLEKHN1.txt

Note: The cut command assumes our data columns are separated by
tabs (i.e. tab-delimited). The chr1-hg19_genes.gtf is a tab-delimited
file, so the default cut command works for us. However, data can be
separated by other types of delimiters like “,” or “;”. If your data is not
tab delimited, there is an argument you can add to your cut command,
-d to specify the delimiter (e.g. -d "," with a .csv file).

• sort is a command used to sort the contents of a file in a particular
order. It has arguments that let you pick which column to sort by (-k),
what kind of sorting you want to do (numeric n) and also if the result of the
sorting should only return unique (-u) values. These are just 2 of the many
features of the sort command.

Let’s run the following command first before using sort:

cut -f 1,4 chr1-hg19_genes.gtf | wc -l

How many lines are returned to you?
Click here to check your output
Your command should have returned 76,767 lines.
Pipe the output to less - notice all the duplicates!

15

cut -f 1,4 chr1-hg19_genes.gtf | less

Now apply the sort -u command before counting the lines.

cut -f 1,4 chr1-hg19_genes.gtf | sort -u | wc -l

How many lines do you see now? Also be sure to actually look at the output!
Click here to check your output
Your command should have returned 27,852 lines.

8 Summary

grep # Allows for searching within files without opening them
+ grep search_term filename

> # Redirect output to another file

>> # append to an existing file rather than overwrite it

| # Pipe key
+ takes the output and runs it through the command specified after it

cut # used to extract specific columns from a tab-delimited file

sort # used to sort a specific column within a tab-delimited file

9 Citation

This lesson has been developed by members of the teaching team at the Harvard
Chan Bioinformatics Core (HBC). These are open access materials distributed
under the terms of the Creative Commons Attribution license (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

16

http://bioinformatics.sph.harvard.edu/
http://bioinformatics.sph.harvard.edu/
https://creativecommons.org/licenses/by/4.0/

• The materials used in this lesson were derived from work that is Copyright
© Data Carpentry (http://datacarpentry.org/). All Data Carpentry instruc-
tional material is made available under the Creative Commons Attribution
license (CC BY 4.0).

• Adapted from the lesson by Tracy Teal. Contributors: Paul Wilson, Milad
Fatenejad, Sasha Wood, and Radhika Khetani for Software Carpentry (http:
// software-carpentry.org/)

• Original Authors: Sheldon McKay, Bob Freeman, Mary Piper, Radhika
Khetani, Meeta Mistry, Jihe Liu, Will Gammerdinger

17

http://datacarpentry.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://software-carpentry.org/
http://software-carpentry.org/

	Learning objectives
	Searching files with grep command
	Class Exercise
	Class Exercise Discussion
	Other useful options for grep

	Searching within FASTQ files with grep
	Class Exercise #2
	Group separators (--), and how to remove them
	Which line number has a match?
	Class Exercise #3

	Redirection
	Redirecting with > AKA ``Greater-than sign''
	Redirecting (and appending) with >>

	Passing output to another command with | (or pipe)
	The Power of Pipes
	Practice with searching and piping/redirection

	Introducing the GTF file format
	Cut & Sort
	Summary
	Citation

