
Intro to Shell Scripting
A Beginner’s Guide

Dr. Princess Rodriguez

2025-01-29

Contents

1 Learning Objectives 2

2 Recap from last class 2

3 cut 2

4 sort 3

5 BED File Structure 3

6 Shell scripts 4
6.1 What can shell scripts be used for? 5
6.2 Writing a simple shell script . 5
6.3 Executing Scripts . 6
6.4 Bash variables . 7
6.5 echo command . 8
6.6 What is the $. 9
6.7 Using variables as input to commands 10
6.8 basename . 10

1

7 Shell scripting using Jupyter Notebook 13
7.1 What is Jupyter Notebook . 14

8 Summary 16

9 Citation 17

1 Learning Objectives

• Capture commands into a shell script
• Implement variables in a shell script

2 Recap from last class

• wc counts lines, words, and characters in its inputs
• command > [file] redirects a command’s output to a file (overwriting any

existing content)
• command >> [file] appends a command’s output to a file
• [first] | [second] is a pipeline: the output of the first command is used as the

input to the second

3 cut

• cut is a command that extracts columns from files.

We can use cut with the -f argument to specify which specific fields or columns
from the dataset we want to extract. Let’s say we want to get the 1st and 3rd
column of a file, we can use:

cut -f 1,3 file.csv

Please note: the argument -f 1,3 cannot be written with spaces between the field
numbers. If you write it as -f 1, 3 (with a space), the cut command will treat
1, as one argument and 3 as another, leading to an error.

2

cut -f 1, 3 file.csv
Error: "cut: invalid byte, character, or field list"

3.0.1 “Class Exercise: Participation Grade”

Before moving on, please complete the following class activity below. You will have ~10 minutes to answer all questions.

[Class-activity](https://forms.gle/z16AAU9oxNg9Dohk6)

4 sort

• sort is a command used to sort lines in text files in a particular
order. The sort command comes with many options, some of them are
further explained below:

Option Description Example Usage
-u (unique) Outputs unique lines sort -u [FILE]
-k (key) Allows sorting based on a

specific key field/column in
each line

sort -k 2 [FILE]

-n (numerics) Performs a numeric sort sort -n [FILE]

5 BED File Structure

A BED file is a widely used format in genomics to store genomics regions and
associated annotations. It is primarily used for specifying intervals or features
on a reference genome such as genes, exons, or regulatory elements. A BED file
consists of at least three required columns but can include additional optional
columns.
Required Columns:

3

1. Chromosome: The name of the chromosome (chr1)
2. Start: The start position of a feature
3. End: The end position of a feature

Figure 1: Bed File

5.0.1 “Class Exercise #2”

Dr.Patel: "Emma I noticed that the file ‘coordinates_PLEKHN1.txt‘ contained a number of duplicates. Can you please modify this file and save it as a BED file so I can upload it to UCSC Genome Browser. The file extension is ‘.bed‘. Thanks."

6 Shell scripts

Over the past few weeks, you have been introduced to a number of commands to
explore data files. To demonstrate the function of each command we have run them
one at a time at the command prompt. The command prompt is useful for testing
out commands and also performing simple tasks like exploring and organizing the
file system. However, when we are running bioinformatic analyses which require a
series of tasks to be run, there is a more efficient way to do this.
Shell scripts are text files that contain commands we know we want to
run.

4

6.1 What can shell scripts be used for?

• for creating, maintaining and implementing system-wide scripts
• automating tedious repetitive tasks
• scheduling and executing system tasks
• for automating the installation process for new software or for new software

updates across the organization
• for scheduling data backup process

6.2 Writing a simple shell script

We are ready to see what makes the shell such a powerful programming environ-
ment. To create our first script, we are going to take some of the commands we
have run previously and save them into a file so that we can re-run all those
operations again later, by typing just one single command. For historical rea-
sons, a bunch of commands saved in a file is referred to as shell script, but make
no mistake, this is actually a small program!
Interestingly, when working on the command line you can give files any extension
(.txt, .tsv, .csv, etc.). Similarly, for a shell script you don’t need a specific exten-
sion. However, it is best practice to give shell scripts the extension .sh
(bash shell script file).

Figure 2: SH extension

6.2.1 “Class Exercise #3”

You will have ~5 minutes to complete. NOTE: It is never my intention to rush you. If you do find you need more time to participate, please let me know.

5

Objective: Create a script that contains 3 lines:

1. Navigate into the ‘raw_fastq‘ directory and create a new file, call it ‘practice.sh‘.

2. Write the First line. This line should:

+ Grab all reads from ‘Mov10_oe_1.subset.fq‘ that contain 10 consecutive N’s
+ Be sure to use the appropriate arguments to output all (4) lines contained within a FASTQ read
+ Then redirect the output to a new file called ‘redirect.txt‘

3. Copy and paste the ‘echo‘ line below:

‘‘‘bash
echo "The number of lines in redirect.txt is:"
‘‘‘

+ You are adding some verbosity to your script by using the ‘echo‘ command. The ‘echo‘ command is used to display a line of text that is passed in as an argument.

4. Write the Third line. This line should:
+ Count the number of lines in redirect.txt

> To run the shell script you can use the ‘sh‘ command, followed by the name of your script:

‘‘‘bash
sh practice.sh
‘‘‘

Final Question: *Dr.Patel: "Emma thanks for carrying out that exercise. How many FASTQ reads in ‘Mov10_oe_1.subset.fq‘ contained 10 consecutive N’s or more?*

Submit your answer in Class Participation survey.

<figure markdown="span">
![One FASTQ Read](../img/fastq_fig.jpg){ width="400"}
<figcaption> One FASTQ Read </figcaption>

</figure>

6.3 Executing Scripts

There are two main ways to execute a script:

6

1. Direct Invocation by the Shell: When you use sh script-name.sh, the
shell (i.e. way to interact with kernel) reads and executes the script file. The
executable permissions of the script file is not checked because we are directly
passing it as an argument to the shell interpreter.

• sh script.sh: The script does not need executable permissions as sh is
invoked manually

• Best for testing scripts

2. Executable Permissions: Making a script executable allows you to run
it directly using ./script-name.sh. Here, the kernel (core of the OS, manages
hardware and system resources) will check if the script file has executable (x)
permissions and invokes the interpreter specified in the scripts shebang line.

• ./script.sh: Requires the script file to have executable permissions and
the kernel uses the interpreter specified in the shebang line.

• Best for automation and reusable scripts

6.4 Bash variables

A variable is a common concept shared by many programming languages. Think
of variables as a temporary store or bucket for a piece of information.
This bucket will have a name associated with it therefore when referring to the
information inside the bucket, we can use the name of the bucket instead!
First, to create a variable in bash, you will provide the name of the variable,
followed by the equals sign and finish with the value we want to assign to the
variable.

name_of_variable=value_of_variable

• Note that the variable name cannot contain spaces, nor can there be spaces
on either side of the equals sign.

• The variable name can have only letters (a to z or A to Z), numbers (0 to 9),
or the underscore character (_). The wrong character usage in the variable
name will cause a syntax error.

• By convention, the variable names in UNIX are in UPPERCASE.

7

Let’s start by creating a variable called NUM that has the number 25 stored inside
it:

NUM=25

If we are using our bucket analogy - You can think of the variable NUM like this:

Figure 3: VARIABLE

Once you press return, you will find yourself back at the command prompt. But
nothing happened. . . so how do we know that we actually created a variable?
One way to see the variable created is by using the echo command.

6.5 echo command

The echo command is used to display text or the value of variables to the termi-
nal/standard output.

echo "Hello, World!"

8

Hello, World!"

In the case of variable values:

NAME=ALICE
echo "Hello, $name!"

Hello, Alice!

To display the contents of the variable we need to explicitly use a $ in front
of the variable name:

echo $NUM

You should see the number 25 returned to you. Notice that when we created the
variable, we did not use the $.

6.6 What is the $

The $ is a standard shell notation for defining and using variables. The $ tells the
shell interpreter to treat the variable as a variable name and substitute its value
in its place, rather than treat it as text or an external command.
Therefore, when defining a variable (i.e. setting the value) you can just
type it as is, but when retrieving the value of a variable you must use
the $!

NOTE: Variables are not physical entities like files. When you create
files you can use ls to list contents and see if the file exists. To list
all variables in your environment you can use the command declare
with the -p option. You will notice that while you only have created
one variable so far, the output of declare -p will be more than just
one variable. These other variables are called environment variables.
To remove a variable you can use unset.

9

6.7 Using variables as input to commands

One important aspect of the variable is that the value stored inside can be used
as input to commands.
Let’s solidify this important concept.

6.7.1 “Class Exercise #4”

1. Create a new variable called ‘FILE‘. Use the name of one of the fastq files in the ‘raw_fastq‘ directory as the value of the variable.

2. Recall the variable with ‘echo‘

3. Check the number of lines in the ‘FILE‘ variable.

> **NOTE:** The variables we create in a session are system-wide, and independent of where you are in the filesystem. This is why we can reference it from any directory. However, it is only available for your current session. If you exit the cluster and login again at a later time, the variables you have created will no longer exist.

6.8 basename

When creating shell scripts variables are used to store information that can be used
later in the script (once or many times over). The value stored can be hard-coded
in as we have done above, assigning the variable a numeric or character value.
Alternatively, the value stored can be the output of another command. We will
demonstrate this using a new command called basename.
The basename command is used to extract the file name or directory name from
a given file path. This is accomplished using string splitting.

String splitting is a way to break a larger string into smaller parts
based on a specified delimiter. The delimiter is a character or a se-
quence of characters that indicates where the string should be split.
For example, if you have the string “apple,banana,orange” and use a
comma as the delimiter, you can split it into three separate strings:
“apple”, “banana”, and “orange”. It’s a handy technique often used in
programming for data manipulation and analysis.

10

Figure 4: String Splitting

Other “common” strings used include:

• Space: Useful for splitting words in a sentence.
• Tab (�): Often used in tab-delimited data files.
• Semicolon (;): Another popular choice for separating values in data.
• Colon (:): Commonly used in key-value pairs.
• Pipe (|): Used in various data formats, such as CSV files.
• Hyphen (-): Can be used to split ranges or parts of a string.
• Underscore (_): Frequently used in variable or function names.
• Forward dash (/): Useful for splitting file paths.

Put more simply, a basename refers to the file or directory name without
its path information. It essentially provides the core name of the file or directory
by removing the directory path and any leading prefixes or extensions.

6.8.1 Basic Usage of basename:

1. Extract file name

basename /path/to/file.txt

11

file.txt

For example, if you have the file path /home/user/documents/report.txt the
basename would be report.txt.
Let’s try an example together:

basename ~/unit1_unix/raw_fastq/Mov10_oe_1.subset.fq

The command returns only the file name.
2. Remove file extension

basename /path/to/file.txt .txt

file

Suppose we wanted to also trim off the file extension (i.e. remove .fq leaving only
the file base name). We can do this by adding a parameter to the command to
specify what string of characters we want trimmed.

basename ~/unit1_unix/raw_fastq/Mov10_oe_1.subset.fq .fq

You should now see that only Mov10_oe_1.subset is returned.

6.8.2 “Class Exercise #5”

Use ‘basename‘ with the file ‘Irrel_kd_1.subset.fq‘ as input. Return only ‘Irrel_kd_1‘ to the terminal.

12

6.8.3 Storing the basename output in a variable

The basename command returns a character string and this too can be stored
inside a variable. To do this without error, we need to add another special syntax
because when we run the command we will generate spaces. If you remember
earlier, one of the rules of creating variables is that there cannot be any spaces.

NOTE: The special syntax involves a key that is probably not used
much on your keyboard, it is the backtick key ‘. On most keyboards
this character is located just underneath the esc key. If you have trouble
finding it you can also just copy and paste it from the materials.

VARIABLE=`basename /path/to/file`

Let’s try an example:

samplename=`basename ~/unit1_unix/raw_fastq/Mov10_oe_1.subset.fq .fq`

Once you press return you should be back at the command prompt. Check to see
what got stored in the samplename variable:

echo $samplename

6.8.3.1 The basename command It is hard to see the utility of
this command by just running it at command-line, but it is very use-
ful command when creating scripts for analysis. Within a script it is
common to create an output file and the basename allows us to easily
create a prefix to use for naming the output files. This utility will be
demonstrated in more detail next.

7 Shell scripting using Jupyter Notebook

Now it’s time to put all of these concepts together to create a more advanced
version of the script. This script will allow the user to get information on any
given directory. These are the steps you will code into a shell script using Jupyter
Notebook:

13

1. Assign the path of the directory to a variable
2. Create a variable that stores only the directory name (and no path informa-

tion)
3. Move from the current location in the filesystem into the directory we selected

in 1.
4. List the contents of the directory
5. List the total number of files in the directory

It seems like a lot, but you are equipped with all the necessary concepts and
commands to do this quite easily!

7.1 What is Jupyter Notebook

Jupyter Notebook is an open-source web application that allows you to create
and share documents containing live code, equations, visualizations, and narrative
text. It’s widely used in data science, scientific research, and education. The term
“Jupyter” is derived from the combination of three core programming languages
it supports: Julia, Python, and R.
Slurm Account: mmg3320 Partition: general Everything else leave as default Press
Launch

Figure 5: Jupyter Logo

14

7.1.1 Class Exercise #6 and your Homework Assignment Part B

This is a self-paced assignment. This is also the final assignment for today. If you
would like to do this from home feel free! You will need to submit (2) screenshots
with your homework for this week.

1. To get started move into the other directory. Jupyter Notebook is user-
friendly. You should be able to click from unit1_unix into other easily.

2. Press New (Right-side) -> New file -> and create a script called
directory_info.sh.

• In this script, we will be adding comments by using the hashtag
symbol #. Lines in your script that begin with # will not be interpreted
as code by command-line. Comments are crucial for proper documen-
tation of your scripts. This will allow your future self to know what
each line of code is doing!

3. Copy and paste the line below as line 1.

USAGE: Provide a full path to the directory you want information on

4. Have your script create a variable called dirPath. Assign this variable as
the full path to raw_fastq\. This will be line 2.

5. Skip a line and then copy and paste the line below to line 4. Yes, it is okay
to skip a line to increase read-ability!

Get only the directory name

6. Next have your script create another variable called dirName. Use this vari-
able to store the directory name extracting it from dirPath. Make use of
the $ to retrieve the value stored inside the variable! This will be line 5.
The next few tasks will require simple commands for changing
directories and listing contents of the raw_fastq directory.

7. Copy and paste the line below to line 7.

echo "Reporting on the directory" $dirName "..."

8. Write a command to change directories into dirPath. This will be line 8.

15

9. Copy and paste the lines below to line 10-11. Modify to make sure the sizes
listed are human-readable.

echo "These are the contents of" $dirName
ls -l

10. Copy and paste the lines below starting at line 13.

echo "The total number of files contained in" $dirName
ls | wc -l

echo "Report complete!"

11. After adding in a final echo statement, you are all set with script! Take a
Screenshot of your final script before hitting Save. Submit this screenshot
with this week’s homework.

12. Run the script directory_info.sh. Take a screenshot of the results. Submit
this screenshot with this week’s homework.

8 Summary

In today’s lesson, we described shell scripts and introduced a few related concepts
that are helpful when you are starting out. It is important to understand each of
the indvidual concepts, but also to see how they all come together to add flexibility
and efficency to your script. Later on we will further illustrate the power of scripts
and how they can make our lives (when coding) much easier. Any type of data
you will want to analyze will inevitably involve not just one step, but many steps
and perhaps many different tools/software programs. Compiling these into a shell
script is the first step in creating your analysis workflow!

16

9 Citation

This lesson has been developed by members of the teaching team at the Harvard
Chan Bioinformatics Core (HBC). These are open access materials distributed
under the terms of the Creative Commons Attribution license (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

• The materials used in this lesson were derived from work that is Copyright
© Data Carpentry (http://datacarpentry.org/). All Data Carpentry instruc-
tional material is made available under the Creative Commons Attribution
license (CC BY 4.0).

• Adapted from the lesson by Tracy Teal. Original contributors: Paul Wilson,
Milad Fatenejad, Sasha Wood and Radhika Khetani for Software Carpentry
(http:// software-carpentry.org/)

• Other Authors: Meeta Mistry, Bob Freeman, Mary Piper, Radhika Khetani,
Jihe Liu, Will Gammerdinger

17

http://bioinformatics.sph.harvard.edu/
http://bioinformatics.sph.harvard.edu/
https://creativecommons.org/licenses/by/4.0/
http://datacarpentry.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://software-carpentry.org/

	Learning Objectives
	Recap from last class
	cut
	sort
	BED File Structure
	Shell scripts
	What can shell scripts be used for?
	Writing a simple shell script
	Executing Scripts
	Bash variables
	echo command
	What is the $
	Using variables as input to commands
	basename

	Shell scripting using Jupyter Notebook
	What is Jupyter Notebook

	Summary
	Citation

