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1 Learning Objectives:

• Understand applications of RNA sequencing
• Introduce the overall differential expression workflow
• Understand experimental design concepts such as replicates and batch effects
• Understand different types of library preps, their requirements and uses.

2 Overview of RNA-seq

RNA-seq is an exciting experimental technique that is utilized to explore and/or
quantify gene expression within or between conditions.
As we know, genes provide instructions to make proteins, which perform some
function within the cell. Although all cells contain the same DNA sequence,
muscle cells are different from nerve cells and other types of cells because of the
different genes that are turned on in these cells and the different RNAs
and proteins produced.

Figure 1: Gene Expression in Cells
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Different biological processes, as well as mutations, can affect which genes are
turned on and which are turned off, in addition to, how much specific genes are
turned on/off.
To make proteins, the DNA is transcribed into messenger RNA, or mRNA, which
is translated by the ribosome into protein. However, some genes encode RNA that
does not get translated into protein; these RNAs are called non-coding RNAs, or
ncRNAs. Often these RNAs have a function in and of themselves and include
rRNAs, tRNAs, and siRNAs, among others. All RNAs transcribed from genes are
called transcripts.

Figure 2: Gene Products

To be translated into proteins, the RNA must undergo processing to generate the
mRNA. In the figure below, the top strand in the image represents a gene in the
DNA, comprised of the untranslated regions (UTRs) and the open read frame.
Genes are transcribed into pre-mRNA, which still contains the intronic sequences.
After post-transciptional processing, a 5’ cap and polyA tail are added and the
introns are spliced out to yield mature mRNA transcripts, which can be translated
into proteins.
While mRNA transcripts have a polyA tail, many of the non-coding
RNA transcripts do not.
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Figure 3: Gene Structure

3 Transcriptomics

The transcriptome is defined as a collection of all the transcript readouts present
in a cell. RNA-seq data can be used to explore and/or quantify the transcriptome
of an organism, which can be utilized for the following types of experiments:

• Differential Gene Expression: quantitative evaluation and comparison of
transcript levels between conditions

• Transcriptome assembly: building the profile of transcribed regions of
the genome, a qualitative evaluation

• Refinement of gene models: building better gene models and verifying
them using transcriptome assembly

• Metatranscriptomics: community transcriptome analysis

4 Illumina Sequencing

4.1 Illumina Library preparation

The general workflow for library preparation is detailed in the step-by-step images
below.
Briefly, the RNA is isolated from the sample and contaminating DNA
is removed with DNase.
The RNA sample then undergoes either selection of the mRNA (polyA
selection) or depletion of the rRNA. The resulting RNA is fragmented.
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Figure 4: Library Prep

Generally, ribosomal RNA represents the majority of the RNAs present
in a cell, while messenger RNAs represent a small percentage of total
RNA, ~2% in humans. Therefore, if we want to study the protein-
coding genes, we need to enrich for mRNA or deplete the rRNA.

Figure 5: PolyA Tail

The size of the target fragments in the final library is a key parame-
ter for library construction. DNA fragmentation is typically done by
physical methods (i.e., acoustic shearing and sonication) or enzymatic
methods (i.e., non-specific endonuclease cocktails and transposase tag-
mentation reactions.

The RNA is then reverse transcribed into double-stranded cDNA and
sequence adapters are then added to the ends of the fragments.

The cDNA libraries can be generated in a way to retain information
about which strand of DNA the RNA was transcribed from. Libraries
that retain this information are called stranded libraries, which are now
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Figure 6: Library Prep

standard with Illumina’s TruSeq stranded RNA-Seq kits. Stranded
libraries should not be any more expensive than unstranded, so there
is not really any reason not to acquire this additional information.
There are 3 types of cDNA libraries available:

• Forward (secondstrand) – reads resemble the gene sequence or the
secondstrand cDNA sequence

• Reverse (firststrand) – reads resemble the complement of the gene
sequence or firststrand cDNA sequence (TruSeq)

• Unstranded

Figure 7: Library Prep Continued
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Finally, the fragments are PCR amplified if needed, and the fragments
are size selected (usually ~300-500bp) to finish the library.

Figure 8: Library Prep Final Step

Image credit: Martin J.A. and Wang Z., Nat. Rev. Genet. (2011) 12:671–682

4.2 Strandedness

The implication of stranded libraries is that one could distinguish whether the
reads are derived from the forward or reverse-encoded transcripts.

Figure 9: Strandedness

• Red = positive strand
• Blue = negative strand
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4.3 Single-end versus Paired-end

After preparation of the libraries, sequencing can be performed to generate the
nucleotide sequences of the ends of the fragments, which are called reads. You
will have the choice of sequencing a single end of the cDNA fragments (single-end
reads) or both ends of the fragments (paired-end reads).

Figure 10: Paired End Reads

• SE - Single end dataset => Only Read1
• PE - Paired-end dataset => Read1 + Read2

– often are 2 separate FastQ files!

Generally single-end sequencing is sufficient unless it is expected that the reads
will match multiple locations on the genome (e.g. organisms with many paralogous
genes), assemblies are being performed, or for splice isoform differentiation.

4.4 Different sequencing platforms

There are a variety of Illumina platforms to choose from to sequence the cDNA
libraries.
Image credit: Adapted from Illumina
Differences in platform can alter the length of reads generated, the quality of reads,
as well as the total number of reads sequenced per run and the amount of time
required to sequence the libraries. The different platforms each use a different flow
cell, which is a glass surface coated with an arrangement of paired oligos that are
complementary to the adapters added to your template molecules. The flow cell
is where the sequencing reactions take place.
Image credit: Adapted from Illumina
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Figure 11: Illumina Platforms

Figure 12: Flow Cell
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4.5 Multiplexing

Depending on the Illumina platform (MiSeq, HiSeq, NextSeq), the number of lanes
per flow cell, and the number of reads that can be obtained per lane varies widely.
The researcher will need to decide on how many reads they would like
per sample (i.e. the sequencning depth) and then based on the platform you
choose calculate how many total lanes you will require for your set of samples.
Typically, charges for sequencing are per lane of the flow cell and you will be able to
run multiple samples per lane. Illumina has therefore devised a nice multiplexing
method which allows libraries from several samples to be pooled and sequenced
simultaneously in the same lane of a flow cell. This method requires the addition
of indices (within the Illumina adapter) or special barcodes (outside the Illumina
adapter) as described in the schematic below.

Figure 13: Demultiplexing

• General gene-level differential expression:

– ENCODE guidelines suggest 30 million SE reads per sample (stranded).
– 15 million reads per sample is often sufficient, if there are a good number

of replicates (>3).
– Use of an HiSeq or NextSeq, or NovaSeq for sequencing

10



5 Differential gene expression

Differential gene expression analysis allows us to explore the gene expression
changes that occur in disease or between different conditions, by measuring the
quantity of RNA expressed by all genes in each of the different conditions.

Figure 14: Differential Gene Expression

Using this analysis we can answer questions such as:

• What genes are differentially expressed between conditions?

• Are there any trends in gene expression over time or across conditions?

Citation: https:// journals.plos.org/plosone/article?id=10.1371/ journal.pone.
0138236

• Which groups of genes change similarly over time or across conditions?

• What processes or pathways are important for my condition of interest?

Citation: https://elifesciences.org/articles/63003
To perform differential gene expression analysis, we perform the following steps:

11

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138236
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0138236
https://elifesciences.org/articles/63003


Figure 15: Trends DE

Figure 16: Pathways DE
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Figure 17: DE Workflow
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6 Experimental Design

Understanding the steps in the experimental process of RNA extraction and prepa-
ration of RNA-Seq libraries is helpful for designing an RNA-Seq experiment and
important to consider when selecting a dataset to analyze. There are special con-
siderations that should be highlighted which can greatly affect the quality of a
differential expression analysis.
These important considerations include:

1. Number and type of replicates
2. Avoiding confounding variables
3. Addressing batch effects

6.1 Replicates

Experimental replicates can be performed as technical replicates or biological
replicates.

Figure 18: Biological Replicates

Image credit: Klaus B., EMBO J (2015) 34: 2727-2730

• Technical replicates: use the same biological sample to repeat the techni-
cal or experimental steps in order to accurately measure technical variation
and remove it during analysis.

• Biological replicates use different biological samples of the same condition
to measure the biological variation between samples.
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Biological replicates are absolutely essential for differential expression
analysis. In fact, the more biological replicates, the better for estimates of bio-
logical variation and the more precise our estimates of the mean expression levels.
This leads to more accurate modeling of our data and identification of more dif-
ferentially expressed genes.

Figure 19: DE Replicates

Image credit: Liu, Y., et al., Bioinformatics (2014) 30(3): 301–304
As the figure above illustrates, biological replicates are of greater impor-
tance than sequencing depth. The figure shows the relationship between se-
quencing depth and number of replicates on the number of differentially expressed
genes identified [1]. Note that an increase in the number of replicates tends
to return more DE genes than increasing the sequencing depth. There-
fore, generally more replicates are better than higher sequencing depth, with the
caveat that higher depth is required for detection of lowly expressed DE genes and
for performing isoform-level differential expression.
Replicates are almost always preferred to greater sequencing depth for bulk RNA-
Seq.

7 Confounding

A confounded RNA-Seq experiment is one where you cannot distinguish the
separate effects of two different sources of variation in the data.
For example, we know that sex has large effects on gene expression, and if all of
our control mice were female and all of the treatment mice were male, then our
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treatment effect would be confounded by sex. We could not differentiate the
effect of treatment from the effect of sex.

Figure 20: Confounding Variables

To AVOID confounding:

• Ensure animals in each condition are all the same sex, age, litter, and
batch, if possible.

• If not possible, then ensure to split the animals equally between conditions

Figure 21: Non Confounded Design

8 Batch effects

Batch effects are a significant issue for RNA-Seq analyses, since you can see sig-
nificant differences in expression due solely to the batch effect.
Image credit: Hicks SC, et al., bioRxiv (2015)

8.1 How to know whether you have batches?

• Were all RNA isolations performed on the same day and with the same kit?

• Were all library preparations performed on the same day?
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Figure 22: Non Confounded Design

• Did the same person perform the RNA isolation/library preparation for all
samples?

• Did you use the same reagents for all samples?

• Did you perform the RNA isolation/library preparation in the same location?

If any of the answers is ‘No’, then you have batches.

8.2 Best practices regarding batches:

• Design the experiment in a way to avoid batches, if possible.

• If unable to avoid batches:

– Do NOT confound your experiment by batch:
Image credit: Hicks SC, et al., bioRxiv (2015)

– DO split replicates of the different sample groups across batches. The
more replicates the better!
Image credit: Hicks SC, et al., bioRxiv (2015)

– DO include batch information in your experimental metadata. Dur-
ing the analysis, we can regress out the variation due to batch so it
doesn’t affect our results if we have that information.
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Figure 23: Confounded Batch

Figure 24: Batch Effect
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Figure 25: Metadata

8.3 Citation

This lesson has been developed by members of the teaching team at the Harvard
Chan Bioinformatics Core (HBC). These are open access materials distributed
under the terms of the Creative Commons Attribution license (CC BY 4.0), which
permits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.
Authors: Mary Piper, Meeta Mistry, Radhika Khetani
Other sources - https://umich-brcf-bioinf.github.io/ rnaseq_demystified_
workshop/ site/Module3a_Design_Prep_Seq#2_Experimental_Design_and_
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