Accessing Public Experimental Data A Beginner's Guide

Dr. Princess Rodriguez

2025-02-05

Contents

1	Learning Objectives	2
2	Where are we heading?	3
3	Sequence file formats	3
	3.1 FASTA	3
	3.2 GTF	5
	3.3 FASTQ	5
4	Downloading file formats	5
	4.1 General biological databases	6
5	Ensembl	7
	5.1 Using the Ensembl genomic database and genome browser \ldots .	7
6	Gene Expression Omnibus (GEO)	10
	6.1 Finding GEO data for a particular publication	10
7	Downloading data from SRA	14
	7.1 Run selector	14

8	\mathbf{SR}	A-Toolkit	20
	8.1	fastq-dump	20
	8.2	Using fastq-dump with the Environmental Module System	20
9	\mathbf{Sub}	mitting a job using SLURM	22
	9.1	SLURM Directives	23
	9.2	Partition	24
	9.3	Walltime	24
	9.4	Nodes, Tasks, and Cores (CPUs)	25
	9.5	Mail Type	25
	9.6	JOB NAME	25
	9.7	Job Submission	26
	9.8	SLURM Commands	26
10	Pai	red end files	28
11	Byp	bassing storage issues with /scratch	30
	11.1	Summary of Header Lines	30
12	Cita	ation	31

1 Learning Objectives

We spent the last few weeks introducing UNIX, navigating the file system, and working on a high performance cluster. Now we will proceed with:

- Understand the types of data that are accessible from Gene Expression Omnibus (GEO)
- Learning how to use SRA-toolkit to retrieve data from the Sequence Reads Archive
 - Download data from the SRA with ${\tt fastq-dump}$
 - split files into forward and reverse reads
 - Download part, not all, the data

2 Where are we heading?

- Where do I download from? GEO
- What bioinformatic tool do I use to perform the download? sratoolkit
- How can I use sratoolkit? A) Environmental modules B) Job submission

I want to stress to "learn" these fundamentals in data processing we are using RNA-Seq as the example. But this outline can be applied to most big data analysis. Its just about identifying the proper bioinformatic tool along the way!

Figure 1: Overview

3 Sequence file formats

Below is a cartoon displaying the (3) file types required to perform an RNA-Seq analysis.

- FASTQ files will contain the raw sequence reads
- The reference genome will be in the form of a FASTA file
- Gene annotations will be in the form of a GTF file

3.1 FASTA

During an NGS experiment, the nucleotide sequences stored inside the raw FASTQ files, or "sequence reads", need to be mapped or aligned to the reference genome to determine from where these sequences originated. Therefore, we need a reference genome (in FASTA format) in which to align our sequences.

If you are not performing RNA-Seq analysis, what are your inputs and where would you find them?

Figure 2: Required File Inputs

Figure 3: FASTA format

3.2 GTF

In addition, many NGS methods require knowing where known genes or exons are located on the genome in order to quantify the number of reads aligning to different genome features, such as exons, introns, transcription start sites, etc. These analyses require reference data containing specific information about genomic coordinates of various genomic "features", such as gene annotation files (in GTF, GFF, etc.).

<u>Col 1</u>	Col 2	Col 3	Col 4	<u>Col 5</u>	<u>Col 6</u>	Col 7	Col 8	<u>Col 9</u>
chr21	HAVANA	transcript	10862622	10863067		+		gene id "ENSG00000169
chr21	HAVANA	exon	10862622	10862667		+		gene id "ENSG00000169
chr21	HAVANA	CDS	10862622	10862667		+	0	gene id "ENSG00000169
chr21	HAVANA	start codon	10862622	10862624		+	0	gene id "ENSG00000169
chr21	HAVANA	exon	10862751	10863067		+		gene id "ENSG00000169
chr21	HAVANA	CDS	10862751	10863064		+	2	gene id "ENSG00000169
chr21	HAVANA	stop codon	10863065	10863067		+	0	gene id "ENSG00000169
chr21	HAVANA	UTR	10863065	10863067		+		gene_id "ENSG00000169

Figure 4: GTF format

3.3 FASTQ

These are the extension of FASTA files which contain quality scores and are output from the NGS technologies.

4 Downloading file formats

To find and download NGS experimental data and associated reference data we will explore a few key repositories. For **finding reference data**, we will navigate the Ensembl database. For **accessing experimental data**, we will explore the Gene Expression Omnibus and the Sequence Read Archive repositories.

- General biological databases: Ensembl, NCBI, and UCSC
- **Organism-specific biological databases:** Wormbase, Flybase, Cryptodb, etc. (often updated more frequently, so may be more comprehensive)

*Note that these reference data sources are relevant to most types of genomic analyses not just NGS analyses.

4.1 General biological databases

Biological databases for gene expression data store genome assemblies and provide annotations regarding where the genes, transcripts, and other genomic features are located on the genome.

Genome assemblies give us the **nucleotide sequence of the reference genome**. Although the Human Genome Project was "completed" in 2003, small gaps in the sequence remained (estimated 1% of gene-containing portions). As technology improves and more genomes are sequenced, these gaps are filled, mistakes are corrected and alternate alleles are provided. Therefore, every several years a **new genome build** is released that contains these improvements.

The **current genome build** is GRCh38/hg38 for the human, which was released in 2013 and is maintained by the Genome Reference Consortium (GRC).

^GR_C Genome Reference Consortium

Figure 5: GRC logo

Usually the biological databases will include the updated versions as soon as they are stably released, in addition to access to archived versions.

Genome databases incorporate these genomes and generate the gene annotations with the following **similarities/differences**:

- Ensembl, NCBI, and UCSC all use the same genome assemblies or builds provided by the GRC
 - GRCh38 = hg38; GRCh37 = hg19
- Each biological database independently determines the gene annotations; therefore, gene annotations between these databases can differ, even though the genome assembly is the same. Naming conventions are also different (chr1=1) between databases.
- Always use the same biological database for all reference data!

5 Ensembl

Ensembl provides a website that acts as a **single point of access to annotated genomes** for vertebrate species. For all other organisms there are additional Ensembl databases available through Ensembl Genomes; however, they do not include viruses (NCBI does).

- Genome assemblies/builds (reference genomes)
 - New genome builds are released every several years or more depending on the species
 - Genome assemblies are updated every two years to include patches, or less often depending on the species
- Gene annotations
 - Gene annotations are created or updated using a variety of sources (ENA, UniProtKB, NCBI RefSeq, RFAM, miRBase, and tRNAscan-SE databases)
 - Automatic annotation is performed for all species using identified proteins and transcripts
 - Manual curation by the HAVANA group is performed for human, mouse, zebrafish, and rat species, providing better confidence of transcript annotations
 - Directly imports annotations from FlyBase, WormBase and SGD

5.1 Using the Ensembl genomic database and genome browser

Navigate to the Ensembl website to view the interface. The homepage for Ensembl has a lot to offer, with the a lot of information and access to a range of functionality and tools.

- Searching Ensembl: Look for a gene, location, variant and more using the search box on the homepage or the box that is provided in the top right corner of any Ensembl page.
 - a gene name (for example, BRCA2) best to use the official gene symbols (HGNC)
 - a UniProt accession number (for example, P51587)

Ensemb	BLAST/BLAT BioMart V	'EP Tools Downloads Help	& Docs Blog	🛃 - Search all spo	ecies
Tools All tools	BioMart > Export custom datasets from Ensembl with this data-mining tool	BLAST/BLAT > Search our genomes for your DNA or protein sequence	Variant Effect Predictor > Analyse your own variants and predict the functional consequences of known and unknown variants	Ensembl is a genome browser that supports research in comp evolution, esquence variation a regulation. Ensembl annotate alignments, predicts regulatory disease data. Ensembl tools in BioMart and the Variant Effect supported species.	parative genomics, and transcriptional genes, computes multiple function and collects clude BLAST, BLAT, Predictor (VEP) for all
	0			Ensembl Release 92 (Apr New goat annotation on	
	Search			Update of Marmoset ass	
	All species	¢ for Go		Mouse: update to Ensem gene set	
	e.g. BRCA2 or rat 5:6279	7383-63627669 or rs699 or corona	ary heart disease	Update to Ensembl-Have gene set (release 28)	ana human GENCODE
				New command line tool	for LD
All genomes		Favourite genomes		Full details I All web updates	s, by release I More news on our blog
Select a spe	ecies 🗘	Human		 10 Apr 2018: Do you use t 	ranscripts for your work?
		GRCh38.p10		 05 Apr 2018: Ensembl 92 	has been released! &
	of all Ensembl species	Still using GRCh37?		 23 Mar 2018: <u>2018 – a yea</u> 	ar of conferences @
 Edit your favor 	ourites	GRCm38.p5			Go to Ensembl blog @
		Zebrafish GRCz10			
Compare genes a species	across Find SNPs and ot variants for my ge GTRTATACATT CTRTATACATT		Retrieve gene sequence	Find a Data Display	Use my own data in Ensembl
	CTTCT_AATT GRAACATTTTC	1 See	CCCASTCCASCGTGG	PIECHART	B 99793225-001 > police y coling
/IBL-EBI	Ensembl creates, integrates and dis data are freely available.	stributes reference datasets and an	alysis tools that enable genomics. We ar	re based at <u>EMBL-EBI</u> ⊮ and our so	ftware and

Ensembl release 92 - April 2018 © EMBL-EBI

Permanent link - View in archive site

Figure 6: Ensembl website

- a disease name (for example, coronary heart disease)
- a variation (for example, rs1223)
- a location a genomic region (for example, rat X:100000..200000)
- a PDB ID or a Gene Ontology (GO) term

Most search results will take you to the appropriate Ensembl view through a results page. These linked pages will allow you to **download information/sequences for specific genes/transcripts/exons/variants**. If you search using a location you will be directed straight to the location tab (this tab provides a view of a region of a genome).

- **Ensembl identifiers**: When using Ensembl, note that it uses the following format for biological identifiers:
 - **ENSG############:** Ensembl Gene ID
 - ENST###########: Ensembl Transcript ID
 - **ENSP###########**: Ensembl Peptide ID
 - **ENSE**###########: Ensembl Exon ID

For non-human species a suffix is added:

- **ENSMUSG###:** MUS (Mus musculus) for mouse
- **ENSDARG###:** DAR (Danio rerio) for zebrafish
- **Downloading reference data from Ensembl**: Go to Downloads, then click FTP Download on the left side bar.

Show 🖥	10 👻 entries				Sho	w/hide columns									Fit	er	
÷	Species	DNA (FASTA)	cDNA (FASTA)	CDS (FASTA)	ncRNA (FASTA)	Protein sequence (FASTA)	Annotated sequence (EMBL)	Annotated sequence (GenBank)	Gene sets	Other annotations		Variation (GVF)	Variation (VCF)	Variation (VEP)	Regulation (GFF)	Data files	BAM/ BigWig
	Human Homo sapiens	<u>FASTA</u> t₽	<u>FASTA</u> ₽	<u>FASTA</u> ₽	FASTA ₽	<u>FASTA</u> d₽	EMBL @	<u>GenBank</u> d?	GTF&GFF3&	<u>TSV</u> ଜ JSON ଜ	<u>MySQL</u> 과	<u>GVF</u> ₽	<u>VCF</u> ₽	<u>VEP</u> ₽	Regulation d (GFF)	Regulati on data files t?	BAM/ BigWig
	Mouse Mus musculus	<u>FASTA</u> t₽	<u>FASTA</u> ₽	<u>FASTA</u> d₽	FASTA ₽	<u>FASTA</u> d₽	EMBL @	GenBank d?	GTF& GFF3&	<u>TSV</u> ₽ JSON₽	<u>MySQL</u> 광	<u>GVF</u> ₽	<u>VCF</u> d₽	<u>VEP</u> t₽	Regulation (GFF)	Regulati on data files P	BAM BigWig
	Zebrafish Danio rerio	FASTA #P	FASTA#	FASTA @	FASTA P	FASTA@	EMBL @	GenBank P	GTF#GFF3#	<u>TSV</u> ₽ JSON₽	MySQL #P	<u>GVF</u> ⊮P	<u>VCF</u> ₽	VEP @		-	BAM BigWig
	Abingdon island glant tortolse Chelonoidis abingdonii	FASTA	FASTA	FASTA @	FASTA @	FASTA@	EMBL@	<u>GenBank</u> ଜନ	GTE & GFF3 &	<u>TSV</u> ₽ JSON₽	<u>MySQL</u> ₽			<u>VEP</u> ₽			BAM/ BigWig
	African ostrich Struthio camelus australis	FASTA P	FASTA#7	<u>FASTA</u> t₽	FASTA P	FASTA@	EMBL @	<u>GenBank</u> #7	GTF#GFF3#	<u>TSV</u> ₽ JSON₽	MySQL #7			<u>VEP</u> t₽			BAM BigWig
	Agassiz's desert tortoise Gopherus agassizii	<u>FASTA</u> t₽	FASTA P	FASTA @	FASTA P	FASTA@	EMBL @	<u>GenBank</u> ନ	<u>GTF</u> ଙ୍କ <u>GFF3</u> ଙ	<u>TSV</u> ₽ JSON₽	MySQL P		•	VEP @		-	BAM/ BigWig
	Algerian mouse Mus spretus	FASTA #P	FASTA#	FASTA @	FASTA P	FASTA@	EMBL @	GenBank P	GTF#GFF3#	<u>TSV</u> ₽ JSON₽	MySQL #P	•		VEP @		-	-
	Alpaca Vicugna pacos	FASTA P	FASTA P	FASTA	FASTA P	FASTA	EMBL@	GenBank@	GTE@GFF3@	TSV@ JSON ₽	MySQL P	•		VEP @		•	-
	Alpine marmot Marmota marmota marmota	<u>FASTA</u> ₽	FASTA P	<u>FASTA</u> ₽	<u>FASTA</u> ₽	<u>FASTA</u> ₽	EMBL@	<u>GenBank</u> ନ୍ଦ	<u>GTF</u> ଜ <u>GFF3</u> ଜ	<u>TSV</u> ₽ JSON₽	MySQL P			<u>VEP</u> ₿	-		BAM/ BigWig
	Amazon molly Poecilia formosa	FASTA@	FASTA@	FASTA@	FASTA@	FASTA@	EMBL@	<u>GenBank</u> ନ୍ଦ	GTF@GFF3@	TSV@ JSON ₽	MySQL @	·		VEP @		-	BAM/ BigWig

Figure 7: FTP Download on Ensembl

5.1.1 Class Exercise

Amanda is a graduate student studying optimal breeding practices for cattle. They are interested in investigating transcriptional differences in cattle raised in tropical versus temperate conditions. To do this, Amanda needs to download the Bos taurus FASTA file to set up their pipeline on the VACC. Amanda comes to you for help. How would you download the Bos taurus FASTA file from Ensembl to be used on the VACC?

6 Gene Expression Omnibus (GEO)

GEO is a database for curated functional genomics data, including gene expression datasets from microarrays, RNA-Seq, and other transcriptomic studies. It stores processed and analyzed data, such as gene expression matrices and differential expression results. This database provides access to data for tens of thousands of studies as it is a requirement for publication. For datasets containing sequencing data, GEO often links to the Sequence Read Archive (SRA) (also maintained by NCBI). Users can access the SRA database to download raw sequencing data files in the FASTQ format.

To download FASTQ from GEO, you need the following:

- 1) A list of accession numbers (SRRXXXXX format) for the files to download using **Run Selector**
- 2) Knowledge of how to access and use fastq-dump
- 3) An understanding of how to submit a script using SLURM batch system

6.1 Finding GEO data for a particular publication

The publication will provide the GEO accession number. Let's find the data associated with the paper, "MOV10 and FRMP regulate AGO2 association with microRNA recognition elements". First, we can navigate to the article.

We can search for the term "GEO"; different papers have different requirements for where this information is located. In this article, it is available in a separate section called Accession Numbers.

Figure 8: Kenny et al. 2014 dataset

By clicking on the GEO accession number for the experiment of interest, the GEO page for this experiment will open.

Please Note: Many paper have multiple GEO accession numbers. Each will correspond to a specific dataset

The GEO page contains information about the experiment, including:

- an experimental summary: gives you an understanding of how the experiment was performed.
- literature citation
- contact information
- links to the Sample GEO pages: each sample will have its own page with additional information regarding how the sample was generated and analyzed
- link to the SRA project containing the raw FASTQ files

In addition, if we were interested in downloading the raw counts matrix (GSE50499_GEO_Ceman_counts.txt.gz), which gives the number of reads/sequences aligning to each gene we could scroll down to supplementary data at the bottom of the page.

Switch to Standard View

MOV10 and FMRP Regulate AGO2 Association with MicroRNA Recognition Elements

Phillip J. Kenny⁶, Hongjun Zhou⁶, Miri Kim⁶, Geena Skariah, Radhika S. Khetani, Jenny Drnevich, Mary Luz Arcila, Kenneth S. Kosik, Stephanie Cemar 🗹 🖂

► Author Contributions

Acknowledgments

Article

Accession Numbers

All iCLIP data files and RNA-seq files are available from the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under the accession numbers GSE51443 (MOV10 iCLIP-SEQ) and GSE50499 (RNA-seq).

Supplemental Information

Figure 9: GEO Accession

S NCBI	Gene Expression Omnibus
IOME SEARCH SITE MA	
Scope: Self 🛟) Format: (HTML +) Amount: Quick +) GEO accession: GSE51443 GO
Series GSE51443	Query DataSets for GSE51443
Status	Public on Nov 20, 2014
Title	Identification of the cellular RNAs bound by MOV10
Organism	Homo sapiens
Experiment type	Expression profiling by high throughput sequencing
Summary	Using the iCLIP protocol we have identified the cellular RNA entities that are bound by MOV10. We report the location and sequence of the MOV10 binding region on each RNA entity.
Overall design	To identify the RNAs that bound MOV10, we UV-cross-linked HEK293F cells and immunoprecipitated with an irrelevant antibody (ir or "control") followed by a MOV10-specific antibody (MOV10) to isolate associated RNAs after stringent washing.
Contributor(s)	Kim M, Kenny PJ, Khetani RS, Arcila ML, Kosik KS, Ceman S
Citation(s)	Kenny PJ, Zhou H, Kim M, Skariah G et al. MOV10 and FMRP regulate AGO2 association with microRNA recognition elements. <i>Cell Rep</i> 2014 Dec 11;9(5):1729-41. PMID: 25464849

Figure 10: GEO Page Example

Download family	Format
SOFT formatted family file(s)	SOFT 🔃
MINiML formatted family file(s)	MINIML 🔃
Series Matrix File(s)	TXT 🕐

Supplementary file	Size	Download	File type/resource
GSE50499_GEO_Ceman_counts.txt.gz	320.2 Kb	<u>(ftp)(http)</u>	ТХТ

Raw data are available in SRA

Processed data is available on Series record

Figure 11: Raw Counts Download

7 Downloading data from SRA

The Sequence Read Archive (SRA) is an archive for high throughput sequencing data, publicly accessible, for the purpose of enhancing reproducibility in the scientific community.

There are four hierarchical levels of SRA entities and their accessions:

- 1. STUDY with accessions in the form of SRP, ERP, or DRP
- 2. SAMPLE with accessions in the form of SRS, ERS, or DRS
- 3. EXPERIMENT with accessions in the form of SRX, ERX, or DRX
- 4. RUN with accessions in the form of SRR, ERR, or DRR

The minimum publishable unit in the SRA, is an EXPERIMENT (SRX)

Since most studies include multiple samples and a high number of replicates, it is useful to know how to download all the sequencing runs from all samples in a study, without having to hunt down and type in individual SRR numbers one by one. Using the study accession number as previously shown, we can navigate to the summary page for the study.

Towards the bottom of the page you will find a link for **SRA** under the heading **Relations**.

Clicking on this link takes you to a page listing all the biological samples for the study, each with links to their specific sequencing runs and files. If we were only interested in one sample, we could follow the relevant link and find its associated sequencing runs. However, since we typically need files for multiple samples and their replicates, we will use **Run Selector** to obtain a comprehensive list.

To do this, scrolls to the bottom of the page and click **Send to**, select the radio button for **Run Selector**, and then press **Go**.

7.1 Run selector

You'll notice that the run selector has aggregated all the information for the study samples, including a table of metadata at the top, giving information on:

Figure 12: SRA Structure

S NCBI	Gene Expression Omnibus
OME SEARCH SITE MA	
NCBI > GEO > Acces	sion Display ? Not logged in Login (
Scope: Self \$	Format: HTML + Amount: Quick + GEO accession: GSE51443 GO
Series GSE51443	3 Query DataSets for GSE51443
Status	Public on Nov 20, 2014
Title	Identification of the cellular RNAs bound by MOV10
Organism	Homo sapiens
Experiment type	Expression profiling by high throughput sequencing
Summary	Using the iCLIP protocol we have identified the cellular RNA entities that are
	bound by MOV10. We report the location and sequence of the MOV10 binding
	region on each RNA entity.
Overall design	To identify the RNAs that bound MOV10, we UV-cross-linked HEK293F cells
Overall design	and immunoprecipitated with an irrelevant antibody (ir or "control") followed
	by a MOV10-specific antibody (MOV10) to isolate associated RNAs after
	stringent washing.
Contributor(s)	Kim M, Kenny PJ, Khetani RS, Arcila ML, Kosik KS, Ceman S
Citation(s)	Kenny PJ, Zhou H, Kim M, Skariah G et al. MOV10 and FMRP regulate AGO2 association with microRNA recognition elements. <i>Cell Rep</i> 2014 Dec

Figure 13: Summary Page

Platforms (1)	GPL11154 Illumina HiSeq 2000 (Homo sapiens)
Samples (8)	GSM1220262 MOV10 knockdown 2
∃ Less	GSM1220263 MOV10 knockdown 3
	GSM1220264 MOV10 overexpression 1
	GSM1220265 MOV10 overexpression 2
	GSM1220266 MOV10 overexpression 3
	GSM1220267 irrelevant siRNA 1
	GSM1220268 irrelevant siRNA 2
	GSM1220269 irrelevant siRNA 3
Relations	
BioProject	PRJNA217781
SRA	SRP029367

Figure 14: SRA Platforms, Samples, and Relations displayed

Access	Summary + 20 per page +	Send to: - Filters: Manage	Filters	
Public (8) Source RNA (8)	Send results to Blast	Choose Destination	ed databases	
		Collections BLAST	Access	
Library Layout single (8)	Search results	0	public controlled	all
	Items: 8	Send whole recordset to Run Selector		
Platform Illumina (8)		Go		
Strategy	GSM1220269: irrelevant siRNA 3; Homo sapiens; RNA-Seq	GEO Datasets	1	1
other (8)	 2 ILLUMINA (Illumina HiSeq 2000) runs: 23.9M spots, 2.4G bases, 1.7Gb downloads Accession: SRX342254 			
Data in Cloud		Find related da	ita	
GS (8) S3 (8)	 <u>GSM1220268: irrelevant siRNA 2; Homo sapiens; RNA-Seq</u> 2 ILLUMINA (Illumina HiSeq 2000) runs: 30.8M spots. 3.1G bases. 2.1Gb downloads 	Database: Sele	ct v	
	 Z IELOWING (Infinitia History 2000) fullis. 30.000 Spots, 3. 10 bases, 2. 10b downloads Accession: SRX342253 			
File Type fastq (8)				
	GSM1220267: irrelevant siRNA 1; Homo sapiens; RNA-Seq			
Clear all	 2 ILLUMINA (Illumina HiSeq 2000) runs: 36.1M spots, 3.6G bases, 2.5Gb downloads Accession: SRX342252 			
Show additional filters	AU0550011. 3AA342232	Search details		
	GSM1220266: MOV10 overexpression 3; Homo sapiens; RNA-Seq	SRP029367 [A1	l Fields]	
	4. 2 ILLUMINA (Illumina HiSeq 2000) runs: 21.2M spots, 2.1G bases, 1.5Gb downloads			
	Accession: SRX342251			/
	GSM1220265: MOV10 overexpression 2; Homo sapiens; RNA-Seq			///.
	5. 2 ILLUMINA (Illumina HiSeq 2000) runs: 37.1M spots, 3.7G bases, 2.6Gb downloads	Search	See	more
	Accession: SRX342250			
	GSM1220264: MOV10 overexpression 1; Homo sapiens; RNA-Seg	Recent activity	,	
	6. 2 ILLUMINA (Illumina HiSeq 2000) runs: 40M spots, 4G bases, 2.8Gb downloads	-	Turn Off	Clear
	Accession: SRX342249	Q SRP029367	(8)	
	GSM1220263: MOV10 knockdown 3: Homo sapiens: RNA-Seg			SRA
	 2 ILLUMINA (Illumina HiSeq 2000) runs: 31.1M spots, 3.1G bases, 2.2Gb downloads 	Q SRX342247	(1)	
	Associate CDV240040			SRA

Figure 15: Run Selector

- LibraryLayout whether the reads were sequenced using single or paired end sequencing
- Platform which sequencing technology was used
- Organism
- Instrument
- Cell type/ tissue type ... and other useful information that should be noted for downstream analysis.

Below this there is also a summary line detailing the total number of runs in the study. Let's pause here. Notice that every sample (ex. GSM1220262, GSM1220263, etc.) has two Run accession numbers associated with it.

To fully understand what this means, we need to go back to the sample page for a sample. Notice that this sample was submitted for sequencing either twice or on two separate lanes.

Therefore, for a single sample, there will be double the amount of sequencing files to process.

It is on this page that we can download the **Metadata** and **Accession List** in text format.

BioProject	PRJNA217781
Consent	PUBLIC
Assay Type	RNA-Seq
AvgSpotLen	100
Cell_Line	HEK293F
Cell_type	Human Embryonic Kidney cells
	GEO

Figure 16: Run Selector: Common Fields Table

× N	▲ Run	BioSample	Bases ³	Bytes	Experiment ⁵	GEO_Accession	mov_expression	create_date	Sample Name	TREATMENT
1	SRR960455	SAMN02340011	2.74 G	1.90 Gb	SRX342247	GSM1220262	low	2013-08-30 13:30:00Z	GSM1220262	MOV10 knockdown
2	SRR960456	SAMN02340011	2.53 G	1.74 Gb	SRX342247	GSM1220262	low	2013-08-30 13:29:00Z	GSM1220262	MOV10 knockdown
3	SRR960457	SAMN02340009	1.62 G	1.12 Gb	SRX342248	GSM1220263	low	2013-08-30 13:38:00Z	GSM1220263	MOV10 knockdown
4	SRR960458	SAMN02340009	1.49 G	1.03 Gb	SRX342248	GSM1220263	low	2013-08-30 13:30:00Z	GSM1220263	MOV10 knockdown
5	SRR960459	SAMN02340010	2.08 G	1.44 Gb	SRX342249	GSM1220264	high	2013-08-30 13:32:00Z	GSM1220264	MOV10 overexpression
6	SRR960460	SAMN02340010	1.92 G	1.32 Gb	SRX342249	GSM1220264	high	2013-08-30 13:28:00Z	GSM1220264	MOV10 overexpression
7	SRR960461	SAMN02340016	1.93 G	1.34 Gb	SRX342250	GSM1220265	high	2013-08-30 13:32:00Z	GSM1220265	MOV10 overexpression
8	SRR960462	SAMN02340016	1.78 G	1.23 Gb	SRX342250	GSM1220265	high	2013-08-30 13:30:00Z	GSM1220265	MOV10 overexpression
9	SRR960463	SAMN02340013	1.10 G	778.10 Mb	SRX342251	GSM1220266	high	2013-08-30 13:26:00Z	GSM1220266	MOV10 overexpression
10	SRR960464	SAMN02340013	1.02 G	721.91 Mb	SRX342251	GSM1220266	high	2013-08-30 13:27:00Z	GSM1220266	MOV10 overexpression
11	SRR960465	SAMN02340014	1.88 G	1.30 Gb	SRX342252	GSM1220267	normal	2013-08-30 13:26:00Z	GSM1220267	control
12	SRR960466	SAMN02340014	1.73 G	1.20 Gb	SRX342252	GSM1220267	normal	2013-08-30 13:26:00Z	GSM1220267	control
13	SRR960467	SAMN02340012	1.61 G	1.11 Gb	SRX342253	GSM1220268	normal	2013-08-30 13:24:00Z	GSM1220268	control
14	SRR960468	SAMN02340012	1.48 G	1.02 Gb	SRX342253	GSM1220268	normal	2013-08-30 13:26:00Z	GSM1220268	control
15	SRR960469	SAMN02340015	1.24 G	879.83 Mb	SRX342254	GSM1220269	normal	2013-08-30 13:25:00Z	GSM1220269	control
16	SRR960470	SAMN02340015	1.15 G	815.22 Mb	SRX342254	GSM1220269	normal	2013-08-30 13:24:007	GSM1220269	control

Figure 17: Run Selector: Sample Display

Figure 18: Understanding Run Selector

Figure 19: Run Selector Take-Away

- The **Metadata** is a very useful text summary of all metadata for all runs in the study
- The Accession List is a list of all the SRR accession numbers for the study. We will need this list to download the FASTQ files using the script below.

8 SRA-Toolkit

The SRA Toolkit is a set of utilities developed by the National Center for Biotechnology Information (NCBI) for accessing data in the Sequence Read Archive (SRA), a database that stores raw sequencing data from various high-throughput sequencing platforms. The toolkit provides command-line tools for downloading, manipulating, and converting sequencing data stored in the SRA format, making it easier for researchers to work with large-scale genomic data. It's widely used in bioinformatics and genomics research for tasks such as sequence alignment, quality control, and data analysis.

8.1 fastq-dump

fastq-dump is a command-line tool included in the SRA Toolkit developed by the National Center for Biotechnology Information (NCBI). It's used to extract data from the Sequence Read Archive (SRA) and convert it into the FASTQ format, which is a standard file format used to store biological sequences and their corresponding quality scores from high-throughput sequencing experiments.

When you download sequencing data from the SRA using fastq-dump, it retrieves the raw sequencing reads along with quality information and saves them into one or more FASTQ files, making it easier for researchers to perform downstream analyses such as alignment, assembly, and variant calling. fastq-dump is a crucial tool in bioinformatics pipelines for processing sequencing data stored in the SRA.

8.2 Using fastq-dump with the Environmental Module System

We would like to run the program fastq-dump to download the fastq files. Let's type the following command:

```
fastq-dump --help
```

If this does not work it means that this program fastq-dump is not available in your current environment. However, a great work-around to downloading and configuring programs yourself is to first check if they are available as library packages through the Environmental Module System found within the VACC.

Environmental Modules provide a convenient way for VACC users to load and unload packages. These packages are maintained and updated by the VACC. The following commands are necessary to work with modules:

Module commands	description	
module avail	List all available software modules	
module load	Loads the named software module	
module list	Lists all the currently loaded modules	
module unload	Unload a specific module	
module purge	Unload all loaded modules	
module help	Displays general help/information about modules	

Note:Before using software, we have to load the software. You will have to load the software every time you would like to use it.

Let's begin:

module load gcc/13.3.0-xp3epyt
module load sratoolkit/3.0.0-y2rspiu

Once a module for a tool is loaded, you have essentially made it directly available to you like any other basic shell command. We can check using the following command:

```
module list
```

```
Currently Loaded Modules:

1) gmp/6.2.1-ip3t4a7 3) mpc/1.3.1-dv3gprk 5) zstd/1.5.6-apl64xw 7) sr

2) mpfr/4.2.1-344sqki 4) zlib-ng/2.1.6-ibq6yfi 6) gcc/13.3.0-xp3epyt
```

The SRAToolKit contains the program called fastq-dump. We would like to use this program to download FASTQ files.

9 Submitting a job using SLURM

Unfortunately, SRA-toolkit doesn't have its own methods for downloading multiple SRR files at once in parallel. To download multiple **SRR FASTQ** files sometimes takes hours. Lucky for us, we have a script we can run. Lets discuss how to submit a script to be run using the SLURM batch system.

Submitting a job to an HPC machine is done using a workload manager called SLURM (Simple Linux Utility for Resource Management). SLURM handles job scheduling, resource allocation (nodes, processors, memory, GPUs), and job monitoring. Jobs can be put in queue and then run as resources become available.

The basic steps you will follow include:

- 1. Log into VACC
- 2. Write job script
- 3. Submit job
- 4. Monitor job and wait for it to run
- 5. Retrieve your output

A job script can be created using any text editor - such as Nano or Vim - or any GUI editor you may want to download.

To use the SLURM job scheduler, it requires **SLURM directives**.

9.1 SLURM Directives

At the top of the job script will always be several lines that start with #SBATCH. The SLURM directives provide the job setup information used by SLURM, including resources to request. This information is then followed by the commands to be executed in the script.

Let's create our first job script.

nano test_job.sh

We need to have a shebang line at the beginning of the script to specify the file is a shell script.

#!/bin/sh

Next lets add the SLURM directives which must precede the executable section in your script.

```
# Run on the general partition
#SBATCH --partition=general
# Request one node
#SBATCH --nodes=1
# Request one task
#SBATCH --ntasks=1
# Request 4GB of RAM
#SBATCH --mem=4G
# Run for a maximum of 30 minutes
#SBATCH --time=30:00
# Name of the job
#SBATCH --job-name=fastq
# Name the output file
#SBATCH --output=%x_%j.out
```

```
# Set email address for notifications
#SBATCH --mail-user=netid@uvm.edu
# Request email to be sent at both begin and end, and if job fails
#SBATCH --mail-type=ALL
```

9.2 Partition

First, we will need to specify a partition. A partition refers to a group of nodes which are characterized by their hardware. Specifying a partition is optional and if not specified the default partition is bluemoon. As practice we will specify bluemoon anyways using the following line:

```
#SBATCH --partition=bluemoon
```

Other Partitions:

Partition	Intended Use	Max Runtime
general	General computing – default partition	30 hours
short	General computing with short runtime	3 hours
week	General computing with longer runtime	$7 \mathrm{~days}$
nvgpu	NVIDIA GPU partition	48 hours

You can check partition usage using the following command:

```
sinfo -p partition_name
sinfo -p general
```

9.3 Walltime

Walltime is the maximum amount of time your job will run.

Your job may run for less time than you request, but it will not run for more time than you request.

Walltime is requested with #SBATCH -time=, where "dd" refers to day(s), "hh" to hour(s), "mm" to minute(s), and "ss" to second(s). You will replace each of these units with a two-digit numeral. Acceptable formats are: mm, mm:ss, hh:mm:ss, dd-hh, dd-hh:mm, dd-hh:mm:ss.

```
# requesting 30 hours of walltime (hh:mm:ss)
#SBATCH --time=30:00:00
```

9.4 Nodes, Tasks, and Cores (CPUs)

The nodes, tasks, and core (CPU) resources you request depend on the type of job you are running. Useful terms to understand are:

- Node: A "node" is a server in the cluster. Each node has is configured with a certain number of cores (CPUs).
- Task: A "task" is a process sent to a core. By default, 1 core is assigned per 1 task.
- Core/CPU: The terms "core" and "cpu" are used interchangeably in high-performance computing.

VACC recommend's that you begin with 1 node and 2 processes. As we move forward, we will change the number of nodes required for "bigger" jobs.

```
# requesting 1 compute node
#SBATCH --nodes=1
# requesting 2 processes
#SBATCH --ntasks=2
```

9.5 Mail Type

In order to receive emails, you must set what types of emails you would like to receive, using the flag –mail-type. The options include: BEGIN (when your job begins), END (when your job ends), FAIL (if your job fails), ALL. For example:

#SBATCH --mail-type=ALL

9.6 JOB NAME

Job name is used as part of the name of the job log files. It also appears in lists of queued and running jobs.

Specifying a job name is not required. If you don't supply a job name, the job ID (supplied by Slurm) is used.

However, if you do wish to specify a job name, use the –job-name flag. For example, where your job name is "myjob":

replace "myjob" with YOUR chosen job name
#SBATCH --job-name=myjob

9.7 Job Submission

Once your job script is written, you can submit it. To submit your job, use the sbatch command with your filename. For example, where the filename is "myfilename":

replace "myfilename" with YOUR filename
sbatch myfilename

When you submit your job, Slurm will respond with the job ID. For example, where the job ID Slurm assigns is "123456," Slurm will respond:

Submitted batch job 123456

Note your job ID!

Command	What It Does		
sbatch scontrol show job	Submits a job, e.g., sbatch myjob Detailed information about a particular		
squeue	job, e.g., scontrol show job 123456 Checks status of all jobs in scheduling		
squeue -u	queue Checks status of all jobs belonging to the		
squeue –start -j	named user, e.g., squeue -u usr1234 Estimates earliest start time of a particular job, e.g., squeue –start -j 123456		

9.8 SLURM Commands

Command	What It Does
squeue –start -u	Estimates earliest start time of all jobs belonging to the named user, e.g., squeue start -u usr1234
scancel -u	Deletes/cancels all jobs belonging to the named user, e.g., scancel -u usr1234
scancel	Deletes/cancels a particular job, e.g., scancel 123456

The first script is a loop that will go through your list of SRR's, and calls a second script at each iteration, passing it for each SRR number on the list.

```
#!/bin/sh
#SBATCH --partition=general
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --mem=4G
#SBATCH --time=30:00
#SBATCH --- job-name=fastq
#SBATCH --output=%x_%j.out
#SBATCH --mail-user=netid@uvm.edu
#SBATCH --mail-type=ALL
#while there are lines in the list of SRRs file
while read p
do
#call the bash script that does the fastq dump, passing it the SRR number next $
sbatch inner_script.sh $p
done <list_of_SRRs.txt</pre>
```

```
#!/bin/sh
#SBATCH --partition=general
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --mem=4G
#SBATCH --time=30:00
#SBATCH --job-name=fastq
#SBATCH --output=%x_%j.out
#SBATCH --mail-user=netid@uvm.edu
```

#SBATCH --mail-type=ALL

```
#for single end reads only
fastq-dump --gzip $1
```

Estimated Memory Requirements

Data Type	Memory Required (Approx.)
Single-end small dataset (~1GB SRA file)	4-8 GB
Single-end large dataset (~10GB SRA file)	8-16 GB
Paired-end small dataset (~10-20GB SRA file)	8-16 GB
Paired-end large dataset (~50GB SRA file)	16-32 GB+

To run the main script:

sbatch sra_fqdump.sh

10 Paired end files

Unlike the standard format for paired end data, where we normally find two fastq files labelled as sample1_001.fastq and sample1_002.fastq, SRR files can be very misleading in that even paired end reads are found in one single file, with sequence pairs concatenated alongside each other. Because of this format, paired files need to be split at the download step. SRA toolkit has an option for this called "-split-files". By using this, one single SRR file will download as SRRxxx_1.fastq and SRRxxx_2.fastq.

Furthermore, there is a very helpful improvement on this function called "-split-3" which splits your SRR into 3 files: one for read 1, one for read 2, and one for any orphan reads (ie: reads that aren't present in both files). This is important for downstream analysis, as some aligners require your paired reads to be in sync (ie: present in each file at the same line number) and orphan reads can throw this order off. Change the inner_script.sh as follows if your reads are paired end:

```
#!/bin/sh
#SBATCH --partition=general
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --mem=4G
#SBATCH --time=30:00
#SBATCH --job-name=fastq
#SBATCH --output=%x_%j.out
#SBATCH --mail-user=netid@uvm.edu
#SBATCH --mail-type=ALL
```

#splits paired read sra files into two normal fastq files plus a third for any of
fastq-dump --split-3 \$1

10.0.1 Class Exercise

1. To check that you are able to download fastq files using the scripts above, please download the SRR_download folder:

/gpfs1/cl/mmg3320/course_materials/SRR_download

- 2. Change **#SBATCH** -mail-user=netid@uvm.edu to your netid
- 3. Run the sra_fqdump.sh script
- 4. If this ran successfully, you should see two new fastq files and emails in your inbox.

SRR25462427.fastq.gz SRR25462429.fastq.gz

- 5. Check their sizes to see that SRR25462396 is 3.2MB and SRR25462427 is 4.6MB.
- 6. When you are finished show me your laptop.

11 Bypassing storage issues with /scratch

When downloading large datasets to the server, it's important to consider storage limits. If you download files to your home directory, the maximum storage allowed is 100GB. This can become an issue when handling tens or hundreds of FASTQ files because SRA-Toolkit does not download FASTQ files directly. Instead, it first writes an intermediate cache file of equal size, which is not automatically removed. As a result, you may quickly run into storage errors, causing incomplete downloads and error messages in your log file.

To avoid this, use the scratch space on the VACC (/scratch). This location has a much larger storage limit (12TB) and is better suited for handling large downloads.

Header Line	What It Does	Example	
#SBATCH -partition=	Specifies partition	#SBATCH	
		-partition=short or	
		#SBATCH	
		-partition $=$ dggpu	
#SBATCH –nodes=	Requests number of	#SBATCH -nodes=1	
	nodes (n)		
#SBATCH –ntasks=	Requests number of	#SBATCHntasks=4	
	processes to run		
#SBATCH –gres=gpu:	Requests GPUs	#SBATCH –gres=gpu:1	
#SBATCH $-mem =$	Requests memory for the	#SBATCH $-mem=24G$	
	entire job		
#SBATCH	Requests memory for the	#SBATCH	
-mem-per-cpu=	entire job	-mem-per-cpu=1G	
#SBATCH –time=	Requests amount of time	#SBATCH	
	needed for job.	-time=01:00:00	
	Acceptable formats are:		
	mm, mm:ss, hh:mm:ss,		
	dd-hh, dd-hh:mm,		
	dd-hh:mm:ss		
#SBATCH –job-name=	Sets job name	#SBATCH	
		–job-name=myjob	

11.1 Summary of Header Lines

Header Line	What It Does	Example		
#SBATCH	Sets email address where	#SBATCH -mail-		
-mail-user=youremail@ uvm.edu	status emails are sent	user=usr1234@uvm.edu		
#SBATCH -mail-type=	Requests that a status	#SBATCH		
	email be sent. Options	-mail-type=ALL		
	include: NONE, BEGIN,	01		
	END, FAIL, REQUEUE,			
	ALL.			
#SBATCH	This command sets a	Output filed named:		
$-$ output= $\%x_\%$ j.out	custom output file name	$myjob_{123456.out}$		
	by using Slurm-assigned			
	variables: $\% x = and \% j$			
	=			

12 Citation

This lesson has been developed by members of the teaching team at the Harvard Chan Bioinformatics Core (HBC). These are open access materials distributed under the terms of the Creative Commons Attribution license (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

This lesson was developed using materials from the Vermont Advanced Computing Center. These materials are freely available.