
Intro to Shell Scripting

Dr. Princess Rodriguez

2025-01-29

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 1 / 49

Learning Objectives

Capture commands into a shell script
Implement variables in a shell script

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 2 / 49

Recap from last class

wc counts lines, words, and characters in its inputs
command > [file] redirects a command’s output to a file
(overwriting any existing content)
command >> [file] appends a command’s output to a file
[first] | [second] is a pipeline: the output of the first command
is used as the input to the second

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 3 / 49

cut
cut is a command that extracts columns from files.

We can use cut with the -f argument to specify which specific fields
or columns from the dataset we want to extract. Let’s say we want
to get the 1st and 3rd column of a file, we can use:

cut -f 1,3 file.csv

Please note: the argument -f 1,3 cannot be written with spaces
between the field numbers. If you write it as -f 1, 3 (with a space),
the cut command will treat 1, as one argument and 3 as another,
leading to an error.

cut -f 1, 3 file.csv
Error: "cut: invalid byte, character, or field list"

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 4 / 49

“Class Exercise: Participation Grade”

Before moving on, please complete the following class activity below. You will have ~10 minutes to answer all questions.

[Class-activity](https://forms.gle/z16AAU9oxNg9Dohk6)

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 5 / 49

sort

sort is a command used to sort lines in text files in a
particular order.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 6 / 49

sort options

Option Description Example Usage
-u (unique) Outputs unique lines sort -u [FILE]
-k (key) Allows sorting based on

a specific key
field/column in each
line

sort -k 2 [FILE]

-n
(numerics)

Performs a numeric
sort

sort -n [FILE]

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 7 / 49

What is a BED File?

A BED file is a widely used format in genomics to store genomics
regions and associated annotations. It is primarily used for specifying
intervals or features on a reference genome such as genes, exons, or
regulatory elements. A BED file consists of at least three required
columns but can include additional optional columns.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 8 / 49

Required Columns for BED:

1 Chromosome: The name of the chromosome (chr1)
2 Start: The start position of a feature
3 End: The end position of a feature

Figure 1: Bed File

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 9 / 49

Class Exercise #2

Dr.Patel: “Emma I noticed that the file coordinates_PLEKHN1.txt
contained a number of duplicates. Can you please modify this file
and save it as a BED file so I can upload it to UCSC Genome
Browser. The file extension is .bed. Thanks.”

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 10 / 49

Shell scripts

Over the past few weeks, you have been introduced to a number of
commands to explore data files. To demonstrate the function of each
command we have run them one at a time at the command prompt.
The command prompt is useful for testing out commands and also
performing simple tasks like exploring and organizing the file system.
However, when we are running bioinformatic analyses which require a
series of tasks to be run, there is a more efficient way to do this.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 11 / 49

Shell scripts continued

Shell scripts are text files that contain commands we know we
want to run.
What can shell scripts be used for?

for creating, maintaining and implementing system-wide scripts
automating tedious repetitive tasks
scheduling and executing system tasks
for automating the installation process for new software or for
new software updates across the organization
for scheduling data backup process

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 12 / 49

Writing a simple shell script

We are ready to see what makes the shell such a powerful
programming environment. To create our first script, we are going to
take some of the commands we have run previously and save them
into a file so that we can re-run all those operations again later,
by typing just one single command.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 13 / 49

Writing a simple shell script

When working on the command line you can give files any extension
(.txt, .tsv, .csv, etc.). Similarly, for a shell script you don’t need a
specific extension. However, it is best practice to give shell
scripts the extension .sh (bash shell script file).

Figure 2: SH extension

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 14 / 49

“Class Exercise #3

You will have ~5 minutes to complete. NOTE: It is never my
intention to rush you. If you do find you need more time to
participate, please let me know.**
Objective: Create a script that contains 3 lines.
Final Question: Dr.Patel: “Emma thanks for carrying out that
exercise. How many FASTQ reads in Mov10_oe_1.subset.fq
contained 10 consecutive N’s or more?

Submit your answer in Class Participation survey.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 15 / 49

One FASTQ Read

<figure markdown="span">
![One FASTQ Read](../img/fastq_fig.jpg){ width="200"}
<figcaption> One FASTQ Read </figcaption>

</figure>

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 16 / 49

Executing Scripts #1

There are two main ways to execute a script:
1. Direct Invocation by the Shell: When you use sh
script-name.sh, the shell (i.e. way to interact with kernel) reads
and executes the script file. The executable permissions of the script
file is not checked because we are directly passing it as an argument
to the shell interpreter.

sh script.sh: The script does not need executable
permissions as sh is invoked manually
Best for testing scripts

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 17 / 49

Executing Scripts #2

2. Executable Permissions: Making a script executable allows you
to run it directly using ./script-name.sh. Here, the kernel (core of
the OS, manages hardware and system resources) will check if the
script file has executable (x) permissions and invokes the interpreter
specified in the scripts shebang line.

./script.sh: Requires the script file to have executable
permissions and the kernel uses the interpreter specified in the
shebang line.
Best for automation and reusable scripts

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 18 / 49

Bash VARIABLE

A variable is a common concept shared by many programming
languages. Think of variables as a temporary store or bucket
for a piece of information. This bucket will have a name
associated with it therefore when referring to the information inside
the bucket, we can use the name of the bucket instead!

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 19 / 49

Creating a Bash VARIABLE

TO create a variable in bash, you will provide the name of the
variable, followed by the equals sign and finish with the value we
want to assign to the variable.

name_of_variable=value_of_variable

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 20 / 49

Important notes when creating Bash
VARIABLES

Note that the variable name cannot contain spaces, nor can
there be spaces on either side of the equals sign.
The variable name can have only letters (a to z or A to Z),
numbers (0 to 9), or the underscore character (_). The wrong
character usage in the variable name will cause a syntax error.
By convention, the variable names in UNIX are in UPPERCASE.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 21 / 49

Class Exercise
Create a variable called NUM that has the number 25 stored inside it:

NUM=25

If we are using our bucket analogy - You can think of the variable
NUM like this:

Figure 3: VARIABLEDr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 22 / 49

What happens after we created NUM?

Once you press return, you will find yourself back at the command
prompt. But nothing happened. . . so how do we know that we
actually created a variable?
One way to see the variable created is by using the echo command.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 23 / 49

echo command

The echo command is used to display text or the value of variables
to the terminal/standard output.

echo "Hello, World!"

Hello, World!"

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 24 / 49

echo command with variables

NAME=ALICE
echo "Hello, $NAME!"

Hello, Alice!

To display the contents of the variable we need to explicitly use a $
in front of the variable name:

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 25 / 49

echo with NUM

echo $NUM

You should see the number 25 returned to you. Notice that when we
created the variable, we did not use the $.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 26 / 49

What is the $

The $ is a standard shell notation for defining and using variables.
The $ tells the shell interpreter to treat the variable as a variable
name and substitute its value in its place, rather than treat it as text
or an external command.
Therefore, when defining a variable (i.e. setting the value)
you can just type it as is, but when retrieving the value of a
variable you must use the $!

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 27 / 49

Important note when dealing with variables

NOTE: Variables are not physical entities like files. When you create
files you can use ls to list contents and see if the file exists. To list
all variables in your environment you can use the command declare
with the -p option. You will notice that while you only have created
one variable so far, the output of declare -p will be more than just
one variable. These other variables are called environment variables.
To remove a variable you can use unset.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 28 / 49

Using variables as input to commands

One important aspect of the variable is that the value stored inside
can be used as input to commands.
Let’s solidify this important concept with Class Exercise #4.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 29 / 49

Class Exercise #4

1 Create a new variable called FILE. Use the name of one of the
fastq files in the raw_fastq directory as the value of the
variable.

2 Recall the variable with echo
3 Check the number of lines in the FILE variable.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 30 / 49

Another important note when dealing with
variables

NOTE: The variables we create in a session are system-wide, and
independent of where you are in the filesystem. This is why we can
reference it from any directory. However, it is only available for your
current session. If you exit the cluster and login again at a later time,
the variables you have created will no longer exist.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 31 / 49

Utility of variables

When creating shell scripts, variables are used to store
information that can be used later in the script (once or many
times over).
The value stored can be hard-coded in as we have done above,
assigning the variable a numeric or character value.
Alternatively, the value stored can be the output of another
command.

We will demonstrate this using a new command called basename.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 32 / 49

basename

The basename command is used to extract the file name or
directory name from a given file path. This is accomplished using
string splitting.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 33 / 49

String splitting
String splitting is a way to break a larger string into smaller parts
based on a specified delimiter.

Figure 4: String Splitting

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 34 / 49

Other “common” strings used include:

Space: Useful for splitting words in a sentence.
Tab (�): Often used in tab-delimited data files.
Semicolon (;): Another popular choice for separating values in
data.
Colon (:): Commonly used in key-value pairs.
Pipe (|): Used in various data formats, such as CSV files.
Hyphen (-): Can be used to split ranges or parts of a string.
Underscore (_): Frequently used in variable or function names.
Forward dash (/): Useful for splitting file paths.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 35 / 49

Basic Usage of basename:

1. Extract file name

basename /path/to/file.txt

file.txt

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 36 / 49

Class Example with basename

basename ~/unit1_unix/raw_fastq/Mov10_oe_1.subset.fq

The command will only return the file name.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 37 / 49

2. Remove file extension

basename /path/to/file.txt .txt

file

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 38 / 49

“Class Exercise #5”

Use basename with the file Irrel_kd_1.subset.fq as input.
Return only Irrel_kd_1 to the terminal.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 39 / 49

Storing the basename output in a variable

The basename command returns a character string and this too can
be stored inside a variable. To do this without error, we need to add
another special syntax because when we run the command we will
generate spaces. If you remember earlier, one of the rules of creating
variables is that there cannot be any spaces.

NOTE: The backtick key ‘. On most keyboards this char-
acter is located just underneath the esc key.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 40 / 49

Storing the basename output in a variable
example

VARIABLE=`basename /path/to/file`

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 41 / 49

Let’s try an example:

samplename=`basename ~/unit1_unix/raw_fastq/Mov10_oe_1.subset.fq .fq`

Check to see what got stored in the samplename variable:

echo $samplename

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 42 / 49

Utility of basename command

It is hard to see the utility of this command by just running it at
command-line, but it is very useful command when creating
scripts for analysis.
Within a script it is common to create an output file and the
basename allows us to easily create a prefix to use for naming
the output files.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 43 / 49

Shell scripting using Jupyter Notebook
Now it’s time to put all of these concepts together to create a more
advanced version of the script. This script will allow the user to get
information on any given directory. These are the steps you will code
into a shell script using Jupyter Notebook:

1 Assign the path of the directory to a variable
2 Create a variable that stores only the directory name (and no

path information)
3 Move from the current location in the filesystem into the

directory we selected in 1.
4 List the contents of the directory
5 List the total number of files in the directory

It seems like a lot, but you are equipped with all the necessary
concepts and commands to do this quite easily!

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 44 / 49

What is Jupyter Notebook

Jupyter Notebook is an open-source web application that allows you
to create and share documents containing live code, equations,
visualizations, and narrative text. It’s widely used in data science,
scientific research, and education. The term “Jupyter” is derived
from the combination of three core programming languages it
supports: Julia, Python, and R.

Figure 5: Jupyter Logo

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 45 / 49

Request time to use Jupyter Notebook on
the VACC

Slurm Account: mmg3320
Partition: general
Everything else leave as default
Press Launch

This might take a few minutes to start up!

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 46 / 49

Class Exercise #6 and your Homework Assignment Part B

This is a self-paced assignment. This is also the final assignment for
today. If you would like to do this from home feel free! You will need
to submit (2) screenshots from this exercise with your homework for
this week.

1 To get started move into the other directory. Jupyter Notebook
is user-friendly. You should be able to click from unit1_unix
into other easily.

2 Press New (Right-side) -> New file -> and create a script called
directory_info.sh.

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 47 / 49

Summary

In today’s lesson, we described shell scripts and introduced a few
related concepts that are helpful when you are starting out. It is
important to understand each of the indvidual concepts, but also to
see how they all come together to add flexibility and efficency to your
script. Later on we will further illustrate the power of scripts and how
they can make our lives (when coding) much easier. Any type of data
you will want to analyze will inevitably involve not just one step, but
many steps and perhaps many different tools/software programs.
Compiling these into a shell script is the first step in creating your
analysis workflow!

Dr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 48 / 49

Citation
This lesson has been developed by members of the teaching team at
the Harvard Chan Bioinformatics Core (HBC). These are open access
materials distributed under the terms of the Creative Commons
Attribution license (CC BY 4.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original
author and source are credited.

The materials used in this lesson were derived from work that is
Copyright © Data Carpentry (http://datacarpentry.org/). All
Data Carpentry instructional material is made available under
the Creative Commons Attribution license (CC BY 4.0).
Adapted from the lesson by Tracy Teal. Original contributors:
Paul Wilson, Milad Fatenejad, Sasha Wood and Radhika Khetani
for Software Carpentry (http:// software-carpentry.org/)
Other Authors: Meeta Mistry, Bob Freeman, Mary Piper,
Radhika Khetani, Jihe Liu, Will GammerdingerDr. Princess Rodriguez Intro to Shell Scripting 2025-01-29 49 / 49

http://bioinformatics.sph.harvard.edu/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://datacarpentry.org/
https://creativecommons.org/licenses/by/4.0/
http://software-carpentry.org/

