Trimming and Filtering

Dr. Princess Rodriguez

2025-01-29

Dr. Princess Rodriguez

- Understand what scenarios warrant trimming
- Be able to clean FASTQ reads using Trimmomatic if required

Overview

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	3/23

Interpreting the HTML report

- Within the report, a summary of all of the modules is given on the left-hand side.

- Do not take the yellow "WARNING"s and red "FAIL"s as

"this sample is not usable"; they should be interpreted as flags!

Introduction

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	5/23
------------------------	------------------------	------------	------

Overview

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	6/23
------------------------	------------------------	------------	------

What to trim?

The types of unwanted information can include one or more of the following:

- 1. leftover adapter sequences
- 2. known contaminants (strings of As/Ts, other sequences)
- 3. poor quality bases

Where does this "unwanted information" come from?

Adapters do not map to the genome

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	8/23

Where does this "unwanted information" come from?

Low quality reads will not map to the genome

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	9/23

Steps to take when considering trimming

Dr.	Princess	Rodrig	uez

The first step in trimming RNA-seq data is to assess the quality of the raw reads. This can be done using software such as FastQC, which generates a report. If the data is of poor quality, it may need to be *re-sequenced* or excluded from further analysis.

Step 2: Adapter Trimming

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	12/23
------------------------	------------------------	------------	-------

Step 2b: Quality Trimming

During trimming, we could also remove low-quality reads by setting a *minimum quality threshold* and removing any bases that fall below this threshold.

Step 2c: Short read filtering

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	14/23
------------------------	------------------------	------------	-------

There are a number of tools that can be used for read trimming, some include:

- Cutadapt
- Trimmomatic
- fastp
- Trim Galore

They have a varying range of clipping and trimming features, but for the most part they all work similarly.

Trimming is not always required

There are some aligners that are available which will "soft-clip" low-quality bases or adapter sequences *during* alignment. If you are working with short<u>er</u> reads (<50 bp), trimming before aligning can actually prevent the aligner from discarding poor-quality reads.

We will compare some aligners next week

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	16/23

Loading Trimmomatic

module load gcc/13.3.0-xp3epyt

Search for the trimmomatic module with:

module avail

Use the following to check that the program was loaded

module list

Trimmomatic options

Trimmomatic has a variety of options to trim your reads. If we run the following command, we can see some of our options.

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29
------------------------	------------------------	------------

18/23

option	meaning
inputFile1	Input reads to be trimmed. Typically the file name will
	contain an <mark>_1 or _R1</mark> in the name.
inputFile2	Input reads to be trimmed. Typically the file name will
	contain an <mark>_2 or _R2</mark> in the name.

Trimmomatic uses positional arguments In PE mode expects (2) files In SE mode expects (1) file

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	19/23

Other Positional arguments

In Next-Generation Sequencing (NGS), "surviving pairs" refers to the paired-end reads that successfully pass quality checks after data processing (like trimming) and can be used for further analysis, while "orphan reads" are single reads from a pair where the other read did not pass quality standards and is therefore discarded, leaving the remaining read "orphaned.".

outputFile1POutput file that contains surviving pairs from the _1 file. outputFile1UOutput file that contains orphaned reads from the _1 file. outputFile2POutput file that contains surviving pairs from the _2 file. outputFile2UOutput file that contains orphaned reads from the _2 file.

Trimmomatic uses the following positional arguments

Dr. Princess Rodriguez	Trimming and Filtering	2025-01-29	21 / 23

In addition, trimmomatic expects to see trimming parameters:

step	meaning
ILLUMINACLIP	Perform adapter removal.
SLIDINGWINDOW	Perform sliding window trimming, cutting once the average quality within the window falls below a threshold.
LEADING	Cut bases off the start of a read, if below a threshold quality.
TRAILING	Cut bases off the end of a read, if below a threshold quality.
MINLEN	Drop an entire read if it is below a specified length.
TOPHRED33	Convert quality scores to Phred-33.

SLIDINGWINDOW

Dr. Princess Rodriguez Trimming and Filtering	2025-01-29 23 / 23
---	--------------------

- We will use only a few of these options and trimming steps in our analysis.
- It is important to understand the steps you are using to clean your data.
- For more information about the Trimmomatic arguments and options, see the Trimmomatic manual.

http://www.usadellab.org/cms/?page=trimmomatic

A Completed Command for Trimmomatic

trimmomatic PE SRR_1056_1.fastq SRR_1056_2.fastq \
SRR_1056_1.trimmed.fastq SRR_1056_1un.trimmed.fasta \
SRR_1056_2.trimmed.fastq SRR_1056_2un.trimmed.fasta \
SLIDINGWINDOW:4:20 ILLUMINACLIP:SRR adapters.fa \

It will be taking a paired end file as input

Scripting etiquette

trimmomatic PE SRR_1056_1.fastq SRR_1056_2.fastq \
SRR_1056_1.trimmed.fastq SRR_1056_1un.trimmed.fasta \
SRR_1056_2.trimmed.fastq SRR_1056_2un.trimmed.fasta \
SLIDINGWINDOW:4:20 ILLUMINACLIP:SRR_adapters.fa \

\ and tab are used to make code more legible

- The output file for surviving pairs from the _1 file
- It will create a new file for this

29/23

- The output file for orphaned reads from the _1 file
- It will create a new file for this

30/23

- The output file for surviving pairs from the _2 file
- It will create a new file for this

- The output file for orphaned reads from the <u>2 file</u>
- It will create a new file for this

Use a sliding window of size 4(bps) that will remove bases if their phred score is below 20

Note this is specified with :

to clip the Illumina adapters from the FASTQ files using the adapter sequences listed in SRR_adapters.fa

Note this is specified with :

Dr.	Princess	Rod	Irigu	lez

Running Trimmomatic

Class Exercise

This Exercise will take ~20 mins. Please work with your neighbor if you have questions. I will begin answering questions at the 5 minute mark.

Input Read Pais: 1107090 Both Surviving: 885220 (79.96%) Forward Only Surviving: 216472 (19.55%) Reverse Only Surviving: 2850 (0.26%) Dropped: 2548 (0.23%) TrimmomaticPE: Completed successfully

Inside of trimmomatic_exercise

- trim.sh
 - SRR2589044_2.fastq.gz
 - SRR2589044_1.fastq.gz
 - trimmomatic_adapters

Inside of trimmomatic_adapters

- TruSeq3-PE.fa
- TruSeq3-PE-2.fa
- TruSeq2-SE.fa
- TruSeq2-PE.fa

NexteraPE-PE.fa

Running Trimmomatic

Class Exercise

This Exercise will take ~20 mins. Please work with your neighbor if you have questions. I will begin answering questions at the 5 minute mark.

Input Read Pais: 1107090 Both Surviving: 885220 (79.96%) Forward Only Surviving: 216472 (19.55%) Reverse Only Surviving: 2850 (0.26%) Dropped: 2548 (0.23%) TrimmomaticPE: Completed successfully

Phil Ewels

Senior Product Manager for Open Source Software at Seqera

🕅 🖻 🖻

Phil Ewels is Product Manager for Open Source at Seqera. He holds a PhD in Molecular Biology from the University of Cambridge, UK. Before joining Seqera in 2022, Phil worked at the National Genomics Infrastructure (NGI) at SciLifeLab in Stockholm, Sweden. He and his team focussed on developing and scaling up new lab protocols and bioinformatics solutions. This involved developing new analysis pipelines that could scale to very high volumes whilst adhering to high standards of reproducibility and reusability. It was through this work that Phil became involved in the Nextflow project and eventually co-founded the nf-core community. Phil's career has spanned many disciplines from lab work and bioinformatics research in epigenetics, through to software development and community engagement. He is passionate about open-source software and has a soft spot for tools with a focus on user-friendliness. He is the author of MultiQC, SRA-Explorer, QCFail.com, and several other pet projects. https://sra-explorer.info/

Mini web application to explore the <u>NCBI Sequence Read</u> <u>Archive</u> and easily access downloads for data, either as .sra files from the NCBI or as .fastq via the <u>EBI ENA</u>.

MultiQC is a tool to create a single report with interactive plots for multiple bioinformatics analyses across many samples.

https://seqera.io/examples/rna-seq/multiqc_report.html

Module: py-multiqc/1.15-fmpaaj7

File location: /gpfs1/cl/mmg3320/course_materials/multiqc_example

Run the following command after navigating inside:

multiqc -n test_multiqc .