
Interpreting Outputs from Alignment Step
February 26, 2025

Outline for Today

• Discuss outputs from alignment (hisat2)

• Class Exercise #1

• Class Exercise #2

• Class Exercise #3

Data Analysis Workflow: File formats

• Quality Control
• Sample Quality and consistency (FASTQC)

• Is trimming appropriate - quality/adapters (trimmomatic)

• FASTQ file

• Alignment/Mapping
• Reference Target (Sequence and annotation files)

• Alignment programs & parameters (hisat2)

• BAM file

• Quantification (next week)
• Counting methods and parameters

• Count matrices

Discussion Points

1. What written code was found inside the
hisat2_align.sh script?

2. What will need to be modified when running the
hisat2_align.sh script on your samples?

3. What outputs should you expect after alignment?

Discussion Points

1. What written code was found inside the
hisat2_align.sh script?

2. What will need to be modified when running the
hisat2_align.sh script on your samples?

3. What outputs should you expect?

Class Exercise #1

1. Navigate to HISAT2_example

2. Make a copy of hisat2_align.sh

3. Call it hisat2_finalproj.sh

4. Open hisat2_finalproj.sh using Jupyter Notebooks

Part 1: SLURM Directives

#!/bin/bash

#SBATCH --partition=general

#SBATCH --nodes=1

#SBATCH --ntasks=2

#SBATCH --mem=10G

#SBATCH --time=3:00:00

#SBATCH --job-name=align_CD8

%x=job-name %j=jobid

#SBATCH --output=%x_%j.out

How much do I

ask for my final

project?

Alignment specific
For 8 samples or less
#!/bin/bash

#SBATCH --partition=general

#SBATCH --nodes=1

#SBATCH --ntasks=8

#SBATCH --mem=48G

#SBATCH --time=12:00:00

#SBATCH --array=1-8

#SBATCH --job-name=align_CD8

%x=job-name %j=jobid

#SBATCH --output=%x_%j.out

Too much computational power for FASTQC*

How was this

determined?

Breaking down the code

#SBATCH --nodes=1 #benefit is in multi-threading

#SBATCH --ntasks=8 # 1 task per sample

#SBATCH --mem=48G #6GB per sample

#SBATCH --time=24:00:00

#SBATCH --array=1-8

SLURM job array

• Each sample runs independently

Alignment specific
For 8-16 samples
#!/bin/bash

#SBATCH --partition=general

#SBATCH --nodes=1

#SBATCH --ntasks=16

#SBATCH --mem=80G

#SBATCH --time=24:00:00

#SBATCH --array=1-16

#SBATCH --job-name=align_CD8

%x=job-name %j=jobid

#SBATCH --output=%x_%j.out

Too much computational power for FASTQC*

8 samples or less 8-16 samples

#SBATCH --nodes=1 #SBATCH --nodes=1

#SBATCH --ntasks=8 #SBATCH --ntasks=16

#SBATCH --mem=48G #SBATCH --mem=80G

#SBATCH --time=24:00:00 #SBATCH --time=24:00:00

#SBATCH --array=1-8 #SBATCH --array=1-16

Take a few minutes to change your parameters according to your final project

Part 2: Initiating the
for loop (line 11 - 16)

Looping through FASTQ files (line 12)

• This line starts a loop that goes through each file

in the current directory that ends with *fastq.gz
(does your samples say *fq.gz)

• The variable fastq_file will temporarily store the

name of each file during each loop iteration

Our directory contains these files:

SRR13423162.fastq.gz

SRR13423165.fastq.gz

The loop will process them one by one, setting

fastq_file to:

1. SRR13423162.fastq.gz
2. SRR13423165.fastq.gz

Extracting the Sample Name (line 14)

• This line removes *fastq.gz from the filename to

extract just the sample name

• It uses sed

sed (short for stream editor)

• Commonly used for substituting, deleting, inserting,
or modifying text in a file

s/pattern/replacement/options

*s=substitution

sed "s/.fastq.gz//”

sed “s/.fastq.gz/nothing/”

• The result is stored in the variable called SAMPLE

original SAMPLE

SRR13423162.fastq.gz SRR13423162

SRR13423165.fastq.gz SRR13423165

Extracting the Sample Name (line 14)

Part 3: Set database directory, genome, and
processor count (line 18)

DBDIR="/gpfs1/cl/mmg3320/course_materials/genome_index/hisat2
_index_mm10”

GENOME="GRCm39” #basename of index files

p=2

*This is specific for mouse!

Part 4: Load required modules
(line 23)

Load required modules

 module load gcc/13.3.0-xp3epyt

 module load hisat2/2.2.1-x7h4grf

 module load samtools/1.19.2-pfmpoam

Part 5: align with hisat2
SE only (line 28)

hisat2 \
-p ${p} \
-x ${DBDIR}/${GENOME} \
-U ${SAMPLE}.fastq.gz \
-S ${SAMPLE}.sam &> ${SAMPLE}.log

*files containing unpaired reads to be aligned

Part 5: align with hisat2
PE only

hisat2 \
-p ${p} \
-x ${DBDIR}/${GENOME} \
-1 ${SAMPLE}_R1.fastq.gz \
-2 ${SAMPLE}_R2.fastq.gz \
-S ${SAMPLE}.sam &> ${SAMPLE}.log

*files containing R1 and R2

Iterate through each fastq.gz file in the current directory

for fastq_file in *_R1.fastq.gz; do

Extract sample name from the file name

SAMPLE=$(echo ${fastq_file} | sed "s/_R1.fastq.gz//")

echo ${SAMPLE}_R1.fastq.gz

Part 5: Other changes for
PE only (lines 11-16)

Why will this script not work “as is” for
PE only ?

• You are asking it to loop over all *.fastq files
• The for loop iterates over all files matching *.fastq,

including both _R1.fastq and _R2.fastq files

• This means it will process _R2.fastq files separately

What happens if you process _1.fastq.gz
and _2.fastq.gz individually? PE only

1. Loss of Paired-End Mapping Advantages

2. Increase False-Positive Alignments

3. Loss of Structural Information

4. Potential Read Duplications

Take home message:

Forward and Reverse reads work together to help align DNA

fragments to the reference genome more precisely

Why will this script not work “as is” for
PE only ?

SE PE

for i in *.fastq; do for i in *_R1.fastq; do

sed "s/fastq.gz//") sed "s/_R1.fastq.gz//")

echo

${SAMPLE}fastq.gz

echo

${SAMPLE}_R1.fastq.gz

• The script assumes that if SAMPLE_R1.fastq exists,

SAMPLE_R2.fastq exists too.

samtools view

• Input is usually a SAM file, but can also use a BAM

• Common uses: extracting a subset of data into a new

file, converting between SAM/BAM files

samtools sort

• Reads need to be ordered in “genomic order” – not the order in

which they were sequenced

samtools index

• Creates index file that allows for fast look-up

• Generates *.bam.bai file

Discussion Points

1. What written code was found inside the
hisat2_align.sh script?

2. What will need to be modified when running the
hisat2_align.sh script on your samples?

3. What outputs should you expect after aligning?

For each fastq file, this script will output:

1. BAM file (.bam)

2. Sorted BAM file (sorted.bam)

3. BAM index file (.bam.bai)

4. Statistics about alignment (.txt/.log; 2 files)

FASTQ SAM BAM
Sorted
BAM

*We deleted this file This is the file we want!

What is a SAM/BAM file?

• A BAM file is a binary version of Sequence
Alignment Map (SAM) file.

• Both stores alignment sequencing reads against a
reference genome.

• These files are much smaller in size and more
efficient for storage and processing

• BAM files can be visualized with Genomic Viewers
(IGV)

SAM/BAM

VCF counts narrowPeakbigwig

FASTQ

FASTA GFF

“GATEWAY FILE”

Class Exercise 2: Compare the outputs from
HISAT2_exercise vs HISAT2_modify (~5mins)

HISAT2_example

Class Exercise 1

HISAT2_modify

Class Exercise 3

SE or PE SE PE

FASTQ input SRR13423162.fastq.gz JC1A_R1.fastq.gz

JC1A_R2.fastq.gz

Outputs after

alignment

SRR13423162.bam

SRR13423162.log

SRR13423162_sorted.bam

SRR13423162_sorted.bam.bai

SRR13423162.txt

HISAT2_example

Class Exercise 1

HISAT2_modify

Class Exercise 3

SE or PE SE PE

FASTQ input SRR13423162.fastq.gz JC1A_R1.fastq.gz

JC1A_R2.fastq.gz

Outputs after

alignment

SRR13423162.bam

SRR13423162.log

SRR13423162_sorted.bam

SRR13423162_sorted.bam.bai

SRR13423162.txt

JC1A.bam

JC1A.log

JC1A_sorted.bam

JC1A_sorted.bam.bai

JC1A.txt

FASTQ SAM BAM
Sorted
BAM

R1-
FASTQ

R2-
FASTQ

SAM BAM
Sorted
BAM

SINGLE END

PAIRED END

Class Exercise 3

Run multiqc inside of HISAT2_example

module load gcc/13.3.0-xp3epyt

module load py-multiqc/1.15-fmpaaj7

Command will be:

multiqc .

View the output: multiqc_report.html

Interpreting multiqc

• Samtools flagstat provides counts for each of the 13
categories

HISAT2_example

Class Exercise 1

SE or PE SE

FASTQ input SRR13423162.fastq.gz

Outputs after

alignment

SRR13423162.bam

SRR13423162.log

SRR13423162_sorted.bam

SRR13423162_sorted.bam.bai

SRR13423162.txt

Samtools flagstat interpretations

1. Total Number of Reads

34818870 + 0 in total (QC-passed reads + QC-failed reads)

• 34,818,870 reads were processed in total

• The +0 means no additional QC-failed reads were included

2. Primary vs Secondary Alignments

25593457 + 0 primary

The total number of reads assigned as a primary alignment;
main set of reads used for analysis

9225413 + 0 secondary

The total number of reads assigned as a secondary alignment;
align to multiple locations in the genome, often found in
repetitive sequences

3. Duplicate Reads

0 + 0 duplicates

No duplicate reads, meaning PCR duplicates were
found

Samtools flagstat interpretations

Samtools flagstat interpretations

4. Mapped Reads

33573586 + 0 mapped (96.42% : N/A)

96.42% successfully mapped to the reference
genome; comprised of primary and secondary reads

24348173 + 0 primary mapped (95.13% : N/A)

Of the total primary reads identified, 95.13% of those
reads were mapped

25593457 - 24348173 = 1,245,284 reads did not align

Samtools flagstat interpretations

5. Paired-End Information

0 + 0 paired in sequencing

0 + 0 read1

0 + 0 read2

0 + 0 properly paired (N/A : N/A)

0 + 0 with itself and mate mapped

0 + 0 singletons (N/A : N/A)

Final Interpretation

 34.8 million reads were processed.

 25.5 million reads were primary alignments.

 33.5 million reads (96.42%) mapped to the
genome – a good alignment rate.

 This dataset is single-end sequencing, not
paired-end.

Homework #7

hisat2_align.sh

This will not be
“ready-to-go”

Basic Template

1

2

3

4

Read the methods

Did the authors add special
arguments during alignment?

TRY TO understand why this
was done.

Email me and we can chat!

Count reads
HTseq-count

Determine

strandedness
RSeQCSAM/BAM

count

	Slide 1
	Slide 2: Outline for Today
	Slide 3: Data Analysis Workflow: File formats
	Slide 4: Discussion Points
	Slide 5: Discussion Points
	Slide 6: Class Exercise #1
	Slide 7: Part 1: SLURM Directives
	Slide 8: Alignment specific For 8 samples or less
	Slide 9: Breaking down the code
	Slide 10: SLURM job array
	Slide 11: Alignment specific For 8-16 samples
	Slide 12
	Slide 13: Part 2: Initiating the for loop (line 11 - 16)
	Slide 14: Looping through FASTQ files (line 12)
	Slide 15: Our directory contains these files:
	Slide 16: Extracting the Sample Name (line 14)
	Slide 17: sed (short for stream editor)
	Slide 18
	Slide 19
	Slide 20: Part 3: Set database directory, genome, and processor count (line 18)
	Slide 21: Part 4: Load required modules (line 23)
	Slide 22: Part 5: align with hisat2 SE only (line 28)
	Slide 23: Part 5: align with hisat2 PE only
	Slide 24: Part 5: Other changes for PE only (lines 11-16)
	Slide 25: Why will this script not work “as is” for PE only ?
	Slide 26: What happens if you process _1.fastq.gz and _2.fastq.gz individually? PE only
	Slide 27: Why will this script not work “as is” for PE only ?
	Slide 28: samtools view
	Slide 29: samtools sort
	Slide 30: samtools index
	Slide 31: Discussion Points
	Slide 32: For each fastq file, this script will output:
	Slide 33: What is a SAM/BAM file?
	Slide 34
	Slide 35: Class Exercise 2: Compare the outputs from HISAT2_exercise vs HISAT2_modify (~5mins)
	Slide 36
	Slide 37
	Slide 38: Class Exercise 3
	Slide 39: Interpreting multiqc
	Slide 40: Samtools flagstat interpretations
	Slide 41: Samtools flagstat interpretations
	Slide 42: Samtools flagstat interpretations
	Slide 43: Samtools flagstat interpretations
	Slide 44: Final Interpretation
	Slide 45: hisat2_align.sh
	Slide 46: Read the methods
	Slide 47

